前言 本文介绍了NMS的应用场合、基本原理、多类别NMS方法和实践代码、NMS的缺陷和改进思路、介绍了改进NMS的几种常用方法、提供了其它不常用的方法的链接。
本文很早以前发过,有个读者评论说没有介绍多类别NMS让他不满意,因此特来补充。顺便补充了NMS的缺点和改进思路。
欢迎关注公众号CV技术指南,专注于计算机视觉的技术总结、最新技术跟踪、经典论文解读、CV招聘信息。
Non-Maximum Suppression(NMS)非极大值抑制。从字面意思理解,抑制那些非极大值的元素,保留极大值元素。其主要用于目标检测,目标跟踪,3D重建,数据挖掘等。
目前NMS常用的有标准NMS, Soft NMS, DIOU NMS等。后续出现了新的Softer NMS,Weighted NMS等改进版。
原始NMS
以目标检测为例,目标检测推理过程中会产生很多检测框(A,B,C,D,E,F等),其中很多检测框都是检测同一个目标,但最终每个目标只需要一个检测框,NMS选择那个得分最高的检测框(假设是C),再将C与剩余框计算相应的IOU值,当IOU值超过所设定的阈值(普遍设置为0.5,目标检测中常设置为0.7,仅供参考),即对超过阈值的框进行抑制,抑制的做法是将检测框的得分设置为0,如此一轮过后,在剩下检测框中继续寻找得分最高的,再抑制与之IOU超过阈值的框,直到最后会保留几乎没有重叠的框。这样基本可以做到每个目标只剩下一个检测框。
实现代码:(以pytorch为例)
def NMS(boxes,scores, thresholds): x1 = boxes[:,0] y1 = boxes[:,1] x2 = boxes[:,2] y2 = boxes[:,3] areas = (x2-x1)*(y2-y1) _,order = scores.sort(0,descending=True) keep = [] while order.numel() > 0: i = order[0] keep.append(i) if order.numel() == 1: break xx1 = x1[order[1:]].clamp(min=x1[i]) yy1 = y1[order[1:]].clamp(min=y1[i]) xx2 = x2[order[1:]].clamp(max=x2[i]) yy2 = y2[order[1:]].clamp(max=y2[i]) w = (xx2-xx1).clamp(min=0) h = (yy2-yy1).clamp(min=0) inter = w*h ovr = inter/(areas[i] + areas[order[1:]] - inter) ids = (ovr<=thresholds).nonzero().squeeze() if ids.numel() == 0: break order = order[ids+1] return torch.LongTensor(keep)
除了自己实现以外,也可以直接使用torchvision.ops.nms来实现。
torchvision.ops.nms(boxes, scores, iou_threshold)
多类别NMS
上面这种做法是把所有boxes放在一起做NMS,没有考虑类别。即某一类的boxes不应该因为它与另一类最大得分boxes的iou值超过阈值而被筛掉。
对于多类别NMS来说,它的思想比较简单:每个类别内部做NMS就可以了。
实现方法:把每个box的坐标添加一个偏移量,偏移量由类别索引来决定。
下面是torchvision.ops.batched_nms的实现源码以及使用方法
#实现源码max_coordinate = boxes.max()offsets = idxs.to(boxes) * (max_coordinate + torch.tensor(1).to(boxes))boxes_for_nms = boxes + offsets[:, None]keep = nms(boxes_for_nms, scores, iou_threshold)return keep#使用方法torchvision.ops.boxes.batched_nms(boxes, scores, classes, nms_thresh)
这里偏移量用boxes中最大的那个作为偏移基准,然后每个类别索引乘以这个基准即得到每个类的box对应的偏移量。这样就把所有的boxes按类别分开了。
在YOLO_v5中,它自己写了个实现的代码。
c = x[:, 5:6] * (0 if agnostic else max_wh) # classesboxes, scores = x[:, :4] + c, x[:, 4] # boxes (offset by class), scoresi = torchvision.ops.nms(boxes, scores, iou_thres)
征稿通知:欢迎可以写以下内容的朋友联系我(微信号:“FewDesire”)。
TVM入门到实践的教程
TensorRT入门到实践的教程
MNN入门到实践的教程
数字图像处理与Opencv入门到实践的教程
OpenVINO入门到实践的教程
libtorch入门到实践的教程
Oneflow入门到实践的教程
Detectron入门到实践的教程
CUDA入门到实践的教程
caffe源码阅读
pytorch源码阅读
深度学习从入门到精通(从卷积神经网络开始讲起)
最新顶会的解读。例如最近的CVPR2022论文。
各个方向的系统性综述、主要模型发展演变、各个模型的创新思路和优缺点、代码解析等。
若自己有想写的且这上面没提到的,可以跟我联系。
声明:有一定报酬,具体请联系详谈。若有想法写但觉得自己能力不够,也可以先联系本人(微信号:FewDesire)了解。添加前请先备注“投稿”。
其它文章
招聘 | 迁移科技招聘深度学习、视觉、3D视觉、机器人算法工程师等多个职位
计算机视觉入门路线
YOLO系列梳理(一)YOLOv1-YOLOv3
YOLO系列梳理(二)YOLOv4
YOLO系列梳理(三)YOLOv5
Attention Mechanism in Computer Vision
从零搭建Pytorch模型教程(三)搭建Transformer网络
从零搭建Pytorch模型教程(二)搭建网络
从零搭建Pytorch模型教程(一)数据读取
StyleGAN大汇总 | 全面了解SOTA方法、架构新进展
一份热力图可视化代码使用教程
一份可视化特征图的代码
工业图像异常检测研究总结(2019-2020)
关于快速学习一项新技术或新领域的一些个人思维习惯与思想总结
原文:https://juejin.cn/post/7095282171627175949