导读:很多朋友问到关于对于人工智能你了解多少的相关问题,本文首席CTO笔记就来为大家做个详细解答,供大家参考,希望对大家有所帮助!一起来看看吧!
什么是人工智能 你理解对了吗
1、人工智能(Artificial Intelligence),英文缩写为AI。它是研究、开发用于模拟、延伸和扩展人的智能的理论、方法、技术及应用系统的一门新技术科学。
2、人工智能是计算机科学的一个分支,它企图了解智能的实质,可以产出一种新的可以和人类智能相似的方式做出反应的智能机器,该领域的研究主要有机器人、语言识别、图像识别、自然语言处理和专家系统等。
3、自从人工智能诞生以来,理论和技术越来越成熟,应用领域在不断的扩大,可以设想,未来人工智能带来的科技产品,将会是人类智慧的“容器”。人工智能可以把人的意识、思维的信息过程的模拟。虽然人工智能不是人的智能,但可以像人那样思考、最终可能超过人的智能。
关于人工智能我们需要了解什么?
随着互联网的不断发展,各种计算机智能系统技术也得到了很好的发展。那么有多少人了解人工智能呢?关于人工智能技术中的图像识别有哪些要点呢?大家对于人工智能需要了解什么?对于当下热门的AI+图像识别技术来说,神经网络图像识别技术和非线性降维图像识别技术是两种最常用的图像识别技术。下面电脑培训为大家详细分析以下两种常见的AI图像识别技术。
一、神经网络图像识别技术
想要了解AI图像的识别技术,最重要的就是需要了解神经网络图像识别技术,其实神经网络图像识别技术就是人工神经网络图像识别技术,它主要是在现代神经生物学研究基础上提出的模拟生物过程中反映人脑某些特性的计算结构,在解释的过程中主要使用模拟,但是在实际使用过程中,IT培训发现神经网络系统本身是没有完全模拟人类的神经网络的,主要是通过对人类的神经网络抽象、简化和模拟实现相关计算结构效率进行提升的。
对于神经网络图像识别技术来说,图像识别主要可以通过神经网络学习算法的应用来实现。在使用神经网络的图像识别中,我们首先需要预处理相关图像。并且昆明北大青鸟认为该预处理主要包括将真彩色图像转换为灰色,度数图、灰度图像的旋转和放大,灰度图像的标准化等。
二、非线性降维的图像识别技术
除了神经网络的图像识别技术之外,非线性降维的图像识别技术也是当前AI时代更常用的图像识别技术。对于传统应用计算机实现的图像识别技术,它是一种相对高维的识别技术。这种高维特性使得计算机在图像识别过程中经常承受很多不必要的负担。这种负担自然会影响图像识别的速度和质量,非线性降维图像识别技术是一种能够更好地实现图像识别和降维的技术形式。
在学习软件开发的过程中,很多人对IT行业的了解非常少,不知道IT行业具体能够做什么?其实在生活中的很多技术都是需要在计算机技术的基础上进行实施的,在参加
昆明电脑培训的同时了解更多相关的行业知识,这样对以后的发展有很大的帮助。
如何了解人工智能?
在我们的生活中,人工智能无处不在。人工智能(简称AI)是计算机学科的一个分支,二十世纪七十年代以来被称为世界三大尖端技术之一(空间技术、能源技术、人工智能)。也被认为是二十一世纪(基因工程、纳米科学、人工智能)三大尖端技术之一。
人工智能领域的研究是从1956年正式开始的,这一年在达特茅斯大学召开的会议上正式使用了“人工智能”这个术语。随后的几十年中,人们从问题求解、逻辑推理与定理证明、自然语言理解、博弈、自动程序设计、专家系统、学习以及机器人学等多个角度展开了研究,已经建立了一些具有不同程度人工智能的计算机系统,例如能够求解微分方程、设计分析集成电路、合成人类自然语言,而进行情报检索,提供语音识别、手写体识别的多模式接口,应用于疾病诊断的专家系统以及控制太空飞行器和水下机器人更加贴近我们的生活。
我们熟知的IBM的“深蓝”在棋盘上击败了国际象棋大师卡斯帕罗夫就是比较突出的例子。90年代以来,人工智能理论方面有了新的进展,计算机硬件突飞猛进的发展,计算机速度的不断提高、存储容量的不断扩大、价格的不断降低以及网络技术的不断发展,许多原来无法完成的工作现在已经能够实现。目前人工智能研究的3个热点是:智能接口、数据挖掘、主体及多主体系统。
1936年,24岁的数学家图灵提出了“自动机”理论,把研究会思维的机器和计算机的工作大大向前推进了一步,他也因此被称为“人工智能之父”。人工智能也称机器智能,它是计算机科学、控制论、信息论、神经生理学、心理学、语言学等多种学科互相渗透而发展起来的一门综合性学科。人工智能的研究从1956 年正式开始,这一年在达特茅斯大学召开的会议上正式使用了“人工智能”(Artificial Intelligence,AI)这个术语。
从计算机应用系统的角度出发,人工智能是研究如何制造智能机器或智能系统,来模拟人类智能活动的能力,以延伸人们智能的科学。如果仅从技术的角度来看,人工智能要解决的问题是如何使电脑表现智能化,使电脑能更灵活方效地为人类服务。只要电脑能够表现出与人类相似的智能行为,就算是达到了目的,而不在乎在这过程中电脑是依靠某种算法还是真正理解了。人工智能是计算机科学中涉及研究、设计和应用智能机器的—个分支,它的目标是研究怎样用电脑来模仿和执行人脑的某些智力功能,并开发相关的技术产品,建立有关的理论。因此,人工智能”与计算机软件有密切的关系。一方面,各种人工智能应用系统都要用计算机软件去实现,另一方面,许多聪明的计算机软件也应用了人工智能的理论方法和技术。
例如,专家系统软件,机器博奕软件等。但是,“人工智能”不等于“软件”,除了软件以外,还有硬件及其他自动化的通信设备。
你对人工智能了解有多少?丨《人工智能》
在看了赫拉利那两本畅销书后,尤其是《未来简史》,我越来越坚信人工智能在未来将给我们带来革命性的变化。但在《未来简史》中对于人工智能的描述不免有些浅显,毕竟作者是历史学家,对人工智能了解有限。所以我就找到一本能让我多了解一些人工智能的书,也就是李开复老师和王咏刚老师合著的这本《人工智能》。
这本书主要介绍了人工智能的定义及范畴、人工智能的发展历程、人工智能的应用场景、人工智能与人类的关系及对人类带来的变革、人工智能时代的创业创新机会以及人工智能时代的教育和个人成长。开复老师技术出身,研究人工智能多年,并且其创立的创新工场也在积极布局人工智能。因此,在书中他带给我们很多对人工智能新的认识以及新的观点,并基于自己的研究给出了他对未来人工智能发展的看法,本书不涉及高深的技术理论,因此,特别适合向我这种门外汉普及人工智能知识。
人工智能是什么?我得承认,在看这本书之间,我对此的认识是非常片面的。我曾认为人工智能是技术理论与硬件的结合,谈到人工智能,至少要有硬件,也就是看得见、摸得着的东西。实则不然,人工智能技术已经应用到我们生活之中了,尤其是移动互联网层面,比如Siri就是智能会话应用,美图秀秀就是人工智能在图像理解层面的应用,谷歌翻译就是人工智能在自然语言翻译方面的应用,淘宝的个性化推荐也是人工智能在现实中的应用,当然,还有不得不提的自动驾驶。
那到底什么是人工智能呢?对人工智能的解释和定义恰好反映了人们在人工智能研究的技术方向上的变化。
第一种定义相当主观,认为人工智能是让人觉得不可思议的计算机程序。第二种定义认为人工智能是与人类思考方式相似的计算机程序,这是一种类似仿生学的直观思路,其实这条路不太通,因为人类的思考方式是怎样的,自己都没搞清楚,怎么顺着这条路去研究人工智能呢?第三种定义则认为是与人类行为相似的计算机程序,这是一种实用主义的见解,也就是不管实现方式,背后的逻辑如何,只要功能表现得与人在类似环境下的行为相似就行。第四种定义是会学习的计算机程序,这个几乎将人工智能和机器学习等同起来,这其实反映的是一种技术趋势,也就是深度学习。 第五种定义是指根据对环境的感知,做出合理的行动,并获得最大收益的计算机程序 ,这个定义就比较全面、均衡了。
人工智能热潮不是近几年才兴起的,其实历史上有三次人工智能的热潮,恰好每次都对应一场棋局,从西洋跳棋到国际象棋再到围棋。三次热潮的背后是众多科研工作者在不同技术方向做出的探索和研究,这些探索为当下人工智能的研究积累了足够丰富的技术资源。
第三次人工智能热潮是深度学习携手大数据引领的。其实深度学习技术并不是横空出世,而是和其相关的人工神经网络技术蛰伏已久,只是计算机性能的提升和互联网的普及带来的大计算能力和大数据,让其锋芒毕露。
李开复老师将这次人工智能热潮称为AI复兴,最大特点是人工智能在语音识别、机器视觉、数据挖掘等多个领域走进了业界的真实应用场景,与商业模式紧密结合,开始在产业界发挥真正的价值。
随着Alpha Go在围棋方面对人类近乎碾压式的胜利,人们开始重视人工智能与人类的关系,因为人工智能的发展速度超过很多人的预期。科学家将人工智能分为三个层次,分别为弱人工智能、强人工智能和超人工智能。弱人工智能指专注于且只能解决特定领域问题的人工智能,显然Alpha Go就处于这个层次,其实当前的人工智算法和应用都处于这个层次。强人工智能则是指能够胜任人类所有工作的人工智能。超人工智能则是指可以比世界上最聪明、最有天赋的人类还聪明的人工智能,当然人们并不知道这种人工智能是怎样一种存在,毕竟没人知道超越人类最高水平的只会到底会表现为何种能力。
近年来一直有“奇点临近”的论调,确实有一部分科学家及行业人士如霍金和马斯克对人工智能表示出担忧,但李开复老师并不这么认为,他认为人类离威胁还相当遥远。因为有很多事如跨领域推理、抽象能力、审美、情感、自我意识等等方面,人工智能还做不到,并且技术瓶颈也极难攻破。
但我们也不得认识到,人工智能不仅仅是一次技术层面的革命,未来它必将与重大的社会经济变革、教育变革、思想变革、文化变革等同步。人工智能可能成为下一次工业革命的核心驱动力,也有可能成为人类社会全新的一次大发现、大变革、大融合和大发展的开端。
如同赫拉利研究当下及未来是从历史中寻找规律一样,李开复老师也从文艺复兴、工业革命带给人类的变化来探讨人工智能将带给人类的影响。他将这个时代称为人类历史上的第二次文艺复兴。
这将给我们的社会带来巨大的变化,其中很重要的一点,就是失业。关于哪种工作容易被AI取代,李开复老师提出一个“五秒钟准则”,即如果一项本来由人从事的工作,如果人可以在5秒钟以内对工作中需要思考和决策的问题做出相应地决定,那么这项工作就很有可能被人工智能全部或部分取代。但他也提到AI只是人类的工具,人的工作可能相当一部分是会转型而不是完全被替代。
作者也提出了当前几个人工智能的热门应用领域,最大的应用场景就是自动驾驶,最被看好的落地区域就是金融,还有已经惠及人们生活的机器翻译和智能超市,在医疗领域,AI也逐渐成为医生的好帮手,难能可贵的是,在艺术领域,人工智能也小有进展。
那么,人类面对人工智能,该如何变革呢?作者呼吁人类要走出人类历史堆积起来的“阶层金字塔”模型,并且要用开放的心态、创造性地迎接人工智能与人类协同工作的新世界。
当然,人工智能时代,也充满了创新和创业的机遇。就像40年前是个人电脑的时代,20年前是互联网的时代,10年前是移动互联网的时代,那么接下来就是人工智能的时代了。各个国家将人工智能提升到国家战略上,各大科技巨头公司也将AI提升到优先的战略层面上,在这方面的创业公司涌现。 种种迹象表明,人工智能的时代真的来了。
人工智能创业,还是要在商业化层面考虑。创新工场管理合伙人汪华认为,人工智能商业化大致分为三个阶段。第一阶段是AI率先在那些在线化高的行业开始应用,在数据段、媒体端实现自动化,也就是拥有高质量线上大数据的行业会最早进入人工智能时代,如金融;第二阶段是随着感知技术、传感器和机器人技术的发展,AI会延伸到实体世界,工业机器人、仓储机器人等会在这个阶段实现大范围普及;第三阶段就是AI延伸到个人场景,全面自动化的时代到来。
AI时代的创业会不同以往,李开复老师认为人工智能创业需要五大基石。一是清晰的领域界限,因为这一类问题是今天以深度学习为代表的人工智能算法最善于解决的;二是闭环的、自动标注的数据,收集数据,才能用数据训练模型,用模型提高性能;三是千万级的数据量,这样深度学习才能受到足够的训练;四是超大规模的计算能力,还是为了满足深度学习的训练;五是顶尖的AI科学家,这也许是最难的一个,当前这方面的人才相当稀缺。
同时,人工智能产业发展也面临六大挑战,分别是前沿科研与产业实践尚未紧密衔接;人才缺口大,人才结构失衡;数据孤岛化和碎片化问题明显;可复用和标准化的技术框架、平台、工具、服务尚未成熟;一些领域存在超前发展、盲目投资问题;创业难度高。
最后,作者探讨了人工智能时代的教育和个人发展。其实总结起来就是两大问题,我们应该如何学习,以及我们该学习什么?
在如何学习上,作者通过举美国密涅瓦大学和清华大学“姚班”的例子,给出了他的答案,分别是主动挑战极限;从实践中学习;关注启发式教育,培养创造力和独立解决问题的能力;互动在线学习越来越重要;主动向机器学习;既学习人—人协作,也学习人—机协作;学习要追随兴趣。
在该学习什么上,作者的思路是:人工智能时代,程式化的、重复性的、仅靠记忆与练习就可以掌握的技能将是最没有价值的技能,几乎一定可以由机器来完成;反之,那些最能体现人的综合素质的技能,例如,人对于复杂系统的综合分析、决策能力,对于艺术和文化的审美能力和创造性思维,由生活经验及文化熏陶产生的直觉、常识,基于人自身的情感(爱、恨、热情、冷漠等)与他人互动的能力……这些是人工智能时代最有价值,最值得培养、学习的技能。
作者最后也谈到了教育,而这正是我所从事的行业,深有同感。作者关于未来的教育体系,提出了一个理想的样子。
坦白讲,仅靠互联网的力量,很难实现这一梦想,互联网对教育的改变也很有限。那加上强大的人工智能技术,或许还有虚拟现实技术,这一梦想终会实现。
在AI时代,也不免要讨论人存在的意义,在《未来简史》中,作者赫拉利花了很大篇幅来讨论。在本书中,作者也发表了自己的看法:AI来了,有思想的人生并不会黯然失色,因为我们全部的尊严就在于思想。
整体来说,这本书对于普及人工智能知识非常有价值,也能启发读者对于未来与机器之间关系的思考。我们必须做好准备迎接这个新时代的到来,而不是一味地恐惧和拒绝。
人工智能的理解和认识
人工智能的理解可以分为两部分,即“人工”和“智能”。“人工”比较好理解,争议性也不大。有时我们会要考虑什么是人力所能及制造的,或者人自身的智能程度有没有高到可以创造人工智能的地步等等。对【人工智能】的认识:研究让计算机具备模拟、延伸和扩展人的智能的一门技术科学。主要是来源于大量的数据来使机器学习能比人更快的计算出结果。
人工智能是研究使计算机来模拟人的某些思维过程和智能行为的学科,主要包括【计算机】实现智能的原理、制造类似于人脑智能的计算机,使计算机能实现更高层次的应用。人工智能将涉及到计算机科学、心理学、哲学和语言学等学科。可以说几乎是自然科学和社会科学的所有学科,其范围已远远超出了计算机科学的范畴,人工智能与思维科学的关系是实践和理论的关系,人工智能是处于思维科学的技术应用层次,是它的一个应用分支。
更多关于人工智能的相关知识,建议到达内教育了解一下。达内教育由来自SUN、IBM、亚信、华为、东软、用友等国际知名IT公司的技术骨干、海外留学生和加拿大专业技术人员创办,直接引进北美IT技术,结合中国IT企业的现状,定制化培养高端IT人才。课程穿插大厂真实项目讲解,理论知识+学习思维+实战操作,打造完整学习闭环。实战讲师经验丰富多种班型任你选择,1v1督学,跟踪式学习, 有疑问随时沟通。
结语:以上就是首席CTO笔记为大家整理的关于对于人工智能你了解多少的相关内容解答汇总了,希望对您有所帮助!如果解决了您的问题欢迎分享给更多关注此问题的朋友喔~