首页>>人工智能->人工智能方略研究方法有哪些(2023年最新整理)

人工智能方略研究方法有哪些(2023年最新整理)

时间:2023-12-06 本站 点击:0

导读:今天首席CTO笔记来给各位分享关于人工智能方略研究方法有哪些的相关内容,如果能碰巧解决你现在面临的问题,别忘了关注本站,现在开始吧!

目前人工智能研究方向有哪些?

人工智能目前有六大研究方向,涉及到计算机视觉、自然语言处理、机器人学、自动推理、机器学习和知识表示,这些研究方向之间也存在比较紧密的联系,目前计算机视觉、自然语言处理和机器学习这三个方向的热度相对比较高。

人工智能的研究方向包括哪些?

人工智能的研究方向可以划分为三层,分别是基础层、技术层和应用层,常见的机器学习、自然语言处理、语音识别等都属于技术层。

基础层是推动人工智能发展的基石,主要包括数据、芯片和算法三个方面,技术层主要是应用技术提供方,应用层大多是技术使用者,这三者形成一个完整的产业链,并相互促进。不过,很多企业(特别是大型科技公司)业务线较长,很多时候既是技术提供方,也是技术的使用者,因而很难有清晰的界定。技术层主要分为三个领域:机器学习、语音识别和自然语言处理、以及计算机视觉。在【AI应用】领域,中国呈现出爆发的趋势,目前主要集中在安防、金融、医疗、教育、零售、机器人以及智能驾驶等领域。

更多关于人工智能的相关内容,建议搜索达内教育了解一下。达内教育对标企业人才标准,制定专业学习计划,囊括主流热点技术,课程穿插大厂真实项目讲解,理论知识+学习思维+实战操作,打造完整学习闭环。实战讲师经验丰富,多种班型任你选择。

人工智能的研究方向包括哪些

首先,人工智能的所有方向都有一个共同的目的,就是企图产出一种“类人”的智能机器。任何一种类别的人工智能都要通过对人的意识和思维信息处理过程进行研究,模拟出像人那样思考,或者像人一样行动的智能产品。人工智能的一个很重要的方向是数据挖掘技术,这种技术的原理是用计算机进行数据分析,然后进行人性化的推荐和预测。比如,我们电脑上的广告是根据我们日常浏览网页的兴趣进行推荐的,微博上、网站上最显眼的也是我们最感兴趣的内容,这些都是计算机分析而得出的。本质上,这种技术发挥的功效与人类的“思考”是相类似的,虽不能完全对等,但现在也能够达到很好的辅助效果。人工智能的一大方向是计算机视觉类,其中包括我们所熟悉的图像识别、视频识别、人脸识别等等。计算机视觉的精髓是教会计算机如何去"看",也就是说,计算机视觉人工智能所要达到的终极目标是用摄影机和电脑替代我们人类的肉眼,这样识别出的图像或者测量出的数据会更准确。比较著名的是“人脸识别”,这属于现在比较流行的身份验证技术之一,通过摄像采集人脸的画面,转化为图像数据,再跟数据库当中的人脸特征信息作“点对点”对比,从而进行身份识别。人工智能的另外一大重要方向是自然语言处理技术,包括机器翻译、语音识别等等。其中语音识别是最核心、普及程度最高的一种自然语言处理技术。语音识别技术是将人语音当中的词汇内容识别出来,通过技术手段,转换为计算机可读取的内容。通俗点来说,就是要让机器学会“听人话”,让计算机作我们的“耳朵”。

人工智能研究内容有哪些?(简答题)

人工智能学科研究的主要内容包括:知识表示、自动推理和搜索方法、机器学习和知识获取、知识处理系统、自然语言理解、计算机视觉、智能机器人、自动程序设计等方面。

用来研究人工智能的主要物质基础以及能够实现人工智能技术平台的机器就是计算机,人工智能的发展历史是和计算机科学技术的发展史联系在一起的。除了计算机科学以外,人工智能还涉及信息论、控制论、自动化、仿生学、生物学、心理学、数理逻辑、语言学、医学和哲学等多门学科。

扩展资料

智能模拟:机器视、听、触、感觉及思维方式的模拟:指纹识别,人脸识别,视网膜识别,虹膜识别,掌纹识别,专家系统,智能搜索,定理证明,逻辑推理,博弈,信息感应与辨证处理。

学科范畴:人工智能是一门边沿学科,属于自然科学、社会科学、技术科学三向交叉学科。

涉及学科:哲学和认知科学,数学,神经生理学,心理学,计算机科学,信息论,控制论,不定性论,仿生学,社会结构学与科学发展观。

参考资料来源:百度百科——人工智能

人工智能有哪些研究方向?

人工智能可分为六个研究方向:

1、机器视觉,包括3D重建,模式识别,图像理解等。

2、语言理解和沟通,包括语音识别,综合,人机对话,机器翻译等;

3、机器人技术,包括力学,控制,设计,运动规划,任务规划等;

4、认知和推理,包括各种身体和社会常识的认知和推理;

5、游戏和道德,包括多智能体,机器人和社会整合的互动,对抗和合作;

6、机器学习,包括各种统计建模,分析工具和计算方法;

人工智能作为下一代信息技术的重要领域,是一种具有普遍性的新型通用技术,可应用于经济社会,生产和生活的各个方面(Trajtenberg,2018); 无意中与此同时,人工智能已经渗透到生产和生活的许多方面,并悄然改变了经济和社会组织的运作模式。 虽然人工智能技术可以使人类摆脱繁琐的程式化工作,但它也是应对人口老龄化的有效手段,但其推广也意味着在应用领域取代就业领域(部分),并将 最终影响就业结构和收入分配格局。

人工智能的实现方法有哪些?

人工智能在计算机上实现时有2种不同的方式:

一种是采用传统的编程技术,使系统呈现智能的效果,而不考虑所用方法是否与人或动物机体所用的方法相同。这种方法叫工程学方法(ENGINEERING APPROACH),它已在一些领域内作出了成果,如文字识别、电脑下棋等。

另一种是模拟法(MODELING APPROACH),它不仅要看效果,还要求实现方法也和人类或生物机体所用的方法相同或相类似。

遗传算法(GENERIC ALGORITHM,简称GA)和人工神经网络(ARTIFICIAL NEURAL NETWORK,简称ANN)均属后一类型。遗传算法模拟人类或生物的遗传-进化机制,人工神经网络则是模拟人类或动物大脑中神经细胞的活动方式。为了得到相同智能效果,两种方式通常都可使用。采用前一种方法,需要人工详细规定程序逻辑,如果游戏简单,还是方便的。如果游戏复杂,角色数量和活动空间增加,相应的逻辑就会很复杂(按指数式增长),人工编程就非常繁琐,容易出错。而一旦出错,就必须修改原程序,重新编译、调试,最后为用户提供一个新的版本或提供一个新补丁,非常麻烦。采用后一种方法时,编程者要为每一角色设计一个智能系统(一个模块)来进行控制,这个智能系统(模块)开始什么也不懂,就像初生婴儿那样,但它能够学习,能渐渐地适应环境,应付各种复杂情况。这种系统开始也常犯错误,但它能吸取教训,下一次运行时就可能改正,至少不会永远错下去,用不到发布新版本或打补丁。利用这种方法来实现人工智能,要求编程者具有生物学的思考方法,入门难度大一点。但一旦入了门,就可得到广泛应用。由于这种方法编程时无须对角色的活动规律做详细规定,应用于复杂问题,通常会比前一种方法更省力。

结语:以上就是首席CTO笔记为大家整理的关于人工智能方略研究方法有哪些的相关内容解答汇总了,希望对您有所帮助!如果解决了您的问题欢迎分享给更多关注此问题的朋友喔~


本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。
如若转载,请注明出处:/AI/14416.html