首页>>人工智能->人工智能穿墙问题有哪些(人工智能穿墙问题有哪些例子)

人工智能穿墙问题有哪些(人工智能穿墙问题有哪些例子)

时间:2023-12-07 本站 点击:0

导读:本篇文章首席CTO笔记来给大家介绍有关人工智能穿墙问题有哪些的相关内容,希望对大家有所帮助,一起来看看吧。

人工智能带来的弊端都可能有那些方面?

1.大规模的失业。人工智能的发展,导致很多工人失业。人工智能可以代替很多职业,如此便会导致大批大批的人失业,大批大批的人整日无所事事。

2.高新技术型人才争夺战导致垄断,贫富分化再度加剧。人工智能时代的到来,必将引发空前的人才争夺战。同时这会导致巨头的垄断、贫富分化加剧。

3.机器人具有很大危险性。机器人类人化之后就会存在很多的不确定性,这也是人工智能的弊端之一。曾经就发现过机器人杀人的事件。

人工智能

是一个以计算机科学为基础,由计算机、心理学、哲学等多学科交叉融合的交叉新兴学科,研究、开发用于模拟、延伸和扩展人的智能的理论、方法、技术及应用系统的一门新的技术科学,企图了解智能的实质,并生产出一种新的能以人类智能相似的方式做出反应的智能机器

问人工智能的奇葩问题

问人工智能的奇葩问题:

1、实现目标或解决问题需要哪些数据。

在人工智能项目团队确定了人工智能可以实现的目标或可以解决的特定问题后,组织团队将继续提出问题,以确定实现目标或解决特定问题所需的数据或变量。

2、如果还没有数据,将从哪里获取数据?

如果组织发现自己需要更多数据,下一步将确定从何处获取所需数据。组织是否生成了数据,是否购买或租用了这些数据?

3、组织的计算策略是什么:内部部署、云计算还是混合部署?

人工智能项目遇到的一个主要问题是让它在与组织的整体数字计算战略不一致的计算平台上运行。组织需要了解当前和将来的计划可以帮助人工智能团队正确规划最佳方法,以接近用于人工智能或机器学习模型的平台。

4、移动和存储数据的计划是什么?

想象一下,跨国公司的业务部门遍布世界各地,在各地的多个地点生成数PB的数据。那么是在创建数据的地方进行处理,还是在世界各地的站点之间以某种方式传输数PB的数据?这是人工智能项目有时没有考虑的关键事项之一。

5、将如何消除偏见并验证模型结果?

收集数据并保存之后,需要确保知道如何验证人工智能或机器学习模型生成的结果。一种方法是运行已知数据集并查看结果,以确保组织对预期结果具有更高的准确性。

人工智能有什么缺陷

第一脆弱性。人工智能系统还无法超出场景或语境理解行为,虽然在下棋或游戏等有固定规则的范围内不会暴露出这一弱点,但是一旦场景发生变化或这种变化超出一定范围,人工智能可能就立刻无法“思考”。

第二、不可预测性。用户无法预测人工智能会做出何种决策,这既是一种优势,也会带来风险,因为系统可能会做出不符合设计者初衷的决策。

第三、安全问题和漏洞。机器会重结果而轻过程,它只会通过找到系统漏洞,实现字面意义上的目标,但其采用的方法不一定是设计者的初衷。例如,网站会推荐一些极端主义视频,因为刺激性内容可以增加浏览时间。再如,网络安全系统会判断人是导致破坏性软件植入的主要原因,于是索性不允许人进入系统。

第四、人机交互失败。尽管让机器提供建议,由人类做最后决策,是解决人工智能某些弱点的常用方法,但由于决策者对系统局限性或系统反馈的认知能力不同,这一问题并不能得到根本解决。

扩展资料:

当计算机出现后,人类开始真正有了一个可以模拟人类思维的工具,在以后的岁月中,无数科学家为这个目标努力着。如今人工智能已经不再是几个科学家的专利了,全世界几乎所有大学的计算机系都有人在研究这门学科,学习计算机的大学生也必须学习这样一门课程,在大家不懈的努力下,如今计算机似乎已经变得十分聪明了。

例如,1997年5月,IBM公司研制的深蓝(DEEP BLUE)计算机战胜了国际象棋大师卡斯帕洛夫(KASPAROV)。大家或许不会注意到,在一些地方计算机帮助人进行其它原来只属于人类的工作,计算机以它的高速和准确为人类发挥着它的作用。

人工智能始终是计算机科学的前沿学科,计算机编程语言和其它计算机软件都因为有了人工智能的进展而得以存在。

结语:以上就是首席CTO笔记为大家整理的关于人工智能穿墙问题有哪些的全部内容了,感谢您花时间阅读本站内容,希望对您有所帮助,更多关于人工智能穿墙问题有哪些的相关内容别忘了在本站进行查找喔。


本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。
如若转载,请注明出处:/AI/17373.html