首页>>人工智能->人工智能中心怎么建设(中国人工智能中心城市)

人工智能中心怎么建设(中国人工智能中心城市)

时间:2023-12-07 本站 点击:0

导读:本篇文章首席CTO笔记来给大家介绍有关人工智能中心怎么建设的相关内容,希望对大家有所帮助,一起来看看吧。

人工智能计算中心有什么用途?

当前,各行各业对适配AI模型的训练需求呈爆发式增长,而一个高质量的AI模型是通过训练和持续迭代优化而来的。当大模型、多模态算法模型训练逐渐成为主流,人工智能算力需求每3.5个月就翻一番,企业在AI研发中进行模型训练的算力成本居高不下。因此,能否为企业和科研机构提供可持续、高适配、高弹性的训练算力成为衡量各地人工智能计算中心“含金量”的核心指标。如果没有技术足够成熟的训练芯片来提供训练算力保障,就难以保障平台产出算法模型的效率,那么以亿为成本而建设的人工智能计算中心也就成了“雷声大雨点小”的空壳工程。

训练芯片和推理芯片之别

在实际的人工智能计算中心硬件布局中,芯片主要适配于推理和训练两大场景。训练芯片和推理芯片之间的逻辑差别可以理解为:训练芯片像老师,一遍一遍教一个完全不认字的小孩从零开始识字,一遍不会就再教一遍,直到教会为止;而推理芯片则是已经学会识字的小孩,阅读不同的书本时,可以识别出书本中的字。

换句话说,训练是从现有的数据中学习新的能力,而推理则是将已经训练好的能力运用到实际场景中。离开了训练的推理,就相当于空中楼阁。所以,相较于推理芯片,训练芯片是人工智能不断进化的基础,也是众多AI芯片厂商需要着力攻克的研发高地。

训练芯片有哪些特点

那么,与推理芯片相比,训练芯片在技术上具有哪些特点?

首先,训练芯片具备浮点运算能力。复杂模型的训练过程中,需通过精细的浮点表达能力对上千亿个浮点参数进行微调数十万步。无浮点运算能力的芯片如用于训练将增加约40%的额外操作,以及至少4倍的内存读写次数。

其次,训练芯片具有专用AI加速单元,并具有高能效比的特点。当前有个别厂商采用2016年国外品牌GPU架构,缺少AI加速单元,导致其AI训练能效比差,且能耗剧增。与之相比,配置矩阵加速单元的训练芯片可使AI训练效率提升10倍。

为AI产业提供充沛算力,需要在AI处理器硬件上有扎实的技术积累。据了解,目前许多人工智能计算中心使用的由升腾910AI训练处理器,原生具备训练能力,集群性能业界领先。目前,该集群可以在28秒完成基于Resnet-50模型训练(持续保持业界第一),并且性能还将持续提升。同样,基于升腾AI基础软硬件平台的“鹏城云脑II”荣获AIPerf(世界人工智能算力)第一名,并再次刷新IO500(高性能计算存储系统性能排行榜-全系统输入输出和10节点系统)两项世界冠军。

训练芯片市场前景广阔

随着自动驾驶、生物信息识别、机器人、自动巡检等人工智能终端产品和应用越来越普遍化,人工智能产业集群的价值不可估量。在从理论走向应用的产业化过程中,训练芯片作为算力平台的“心脏”,其市场也持续蓬勃发展。

研究机构赛迪顾问发布的报告显示,从2019年到2021年,中国云端训练AI芯片市场累计增长了约127%。2021年,云端训练芯片市场规模将达到139.3亿元。据预测,从2019年到2024年,云端训练芯片的年复合增长率或达到32%。

以全国第一个人工智能计算中心——武汉人工智能计算中心为例,其一期建设规模为100P FLOPS AI算力,今年5月31投运当天算力负载便达到了90%,投运之后持续满负荷运行。如今,武汉人工智能计算中心仍在持续扩容中。9月初正式上线的西安未来人工智能计算中心一期规划300PFLOPSFP16(每秒30亿亿次半精度浮点计算)计算能力。作为西北地区首个大规模人工智能算力集群,其算力平台承载力达到了当下我国同类平台中的领先的水平。

市场的高速增长预示着,当人工智能发展到深水区阶段,各行各业对AI训练算力的需求将长期保持几何级增长。而训练芯片作为训练算力的引擎,也是人工智能模型训练的“基础中的基础”,也将作为人工智能计算中心的灵魂得到更广泛的重视。相信,在我国极为丰富的AI应用生态优势引领下,无论是训练芯片还是推理芯片,都将得到更为长足的快速发展。

人工智能计算中心是智慧城市建设、企业智能化升级、人工智能企业集约集聚的核心,我们这边就是处于智慧城市的建设中,用的是华为这边提供的解决方案,他们的人工智能计算中心要更加稳定靠谱,提供的服务也要好很多。

全国首个人工智能创新应用先导区揭牌,围绕三大任务展开建设

5月21日,全国首个人工智能创新应用先导区在上海启动建设。 朱泉春 图

工业和信息化部会同上海市人民政府召开人工智能产业发展院士专家座谈会暨人工智能创新应用先导区建设启动会。会上,工业和信息化部与上海市领导共同为“上海(浦东新区)人工智能创新应用先导区”揭牌。

启动会透露,先导区的建设将主要围绕三大任务展开。一是打造人工智能核心产业集群。积极培育以智能芯片、智能网联 汽车 、智能机器人、智能硬件为重点的人工智能核心产业,着力提高产业基础能力,引进、培育一批具有国际竞争力的领军企业,打造张江、金桥、临港等特色产业集聚区。

二是推动人工智能创新应用。开展AI+医疗、AI+制造、无人驾驶、AI+金融四大领域人工智能创新应用与标杆项目建设,将工信部揭榜挂帅产生的创新产品、平台和服务在浦东新区先行先试,打造世博、陆家嘴、张江、金桥、临港等特色应用示范区。

三是建设人工智能创新支撑体系。围绕“算法、算力、数据”等要素,打造人工智能产业评估、技术测评、行业数据应用等公共服务平台,降低人工智能创新的周期与成本。建立人工智能技术创新体系,推动企业、高校、科研院所等多元主体加大创新投入。积极 探索 科技 体制改革,实现人工智能创新成果转化落地。同时加大人工智能高端人才和专业人才的引进、培育力度,打造人才高地。

此外,先导区的建设还将从加强组织领导、整合政策资源、加快改革创新、建立标准制度、强化资金保障等五个方面形成一系列保障措施。

丰富的应用场景是上海人工智能发展的特色优势。

启动会上还发布了人工智能揭榜挂帅“中国赛道”暨先导区重点应用场景,包含AI+综合研发赛道、AI+制造赛道、AI+生活赛道、 AI+交通赛道等四大赛道,以及芯片研发创新中心、自主智能无人系统、智能装备制造、智慧工厂、智慧医疗、智慧养老、无人驾驶等16个重点场景,以赛道布局为主线,以开放场景为抓手,分批次、分阶段推进先导区建设任务,带动上海人工智能产业高质量发展、 社会 生活智慧化升级。

座谈中,与会专家围绕人工智能技术与产业发展、人工智能赋能实体经济,以及先导区下一步发展布局方向等展开讨论交流,提出了一系列有价值的意见建议。

为加快推动人工智能创新发展与成果应用,支持上海打造“智能+”产业高地,工业和信息化部于5月15日复函上海市人民政府,支持建设上海(浦东新区)人工智能创新应用先导区,要求先导区在人工智能产业布局、基础设施建设、标准体系构建、知识产权交易等方面积极 探索 ,注重创新政府管理,建立包容审慎的监管政策,消除融合发展面临的资质、数据、安全等壁垒。

要注重营造公平开放、竞争有序的市场环境,健全 社会 资本投入机制,激发企业创新活力,培育一批具有国际竞争力的人工智能优秀企业。

要面向制造、医疗、交通、金融等先行领域,建成一批新一代人工智能产业创新应用“试验场”,不断释放人工智能新技术、新产品的“赋能”效应。

下一步,上海将以人工智能创新应用先导区建设作为的新的起点,按照工业和信息化部的相关要求,着力将浦东新区建成具有国际竞争力的人工智能核心产业集聚区、全国人工智能创新技术和产品应用示范区,以及人工智能行业标准和制度规范先行先试区,形成辐射长三角乃至全国的人工智能高地。

打赢AI争夺战,要靠一张算力网

AI算力是未来国家、城市、企业的核心竞争力。

文丨华商韬略 陈必章

在人工智能时代,AI算力就是电,AI计算中心就是电厂。

电力时代,我们构建了一张“电网”,如今随着国内各地人工智能计算中心的相继落地,我们正在编织一张AI算力网络。

目前,人工智能的发展已提升到国家战略层面,加快人工智能产业发展,保障和提供充沛的AI算力,对于赢在AI时代的国家、城市和企业来说,已经是迫在眉睫的问题。

【没有算力 就像没有电】

最近这段时间,全国很多地方政府和企业领导最闹心的事情什么?

答案可能是两个字:缺电。

但这个闹心的事情还没解决,在全球各国,乃至一国之内的不同地区,又开始面临一个像电力一样,决定国计民生的关键要素。

这个关键要素就是AI算力。

AI算力,顾名思义,就是支撑AI的计算能力。 此处的计算不是加减乘除,而是对世界万物的计算,是万物互联、人工智能之下的高度复杂、无所不在的计算。

不同于传统算力,AI算力为了支撑AI模型的开发、训练和推理,对并行处理能力的要求特别高,也因此需要专门的AI芯片和框架。

比如, 具备强大浮点运算能力的AI芯片,才能够通过训练、持续迭代优化提供满足行业企业智能化转型的高质量AI模型。 复杂模型训练中,需对上千亿个浮点参数进行微调数十万步,需要精细的浮点表达能力。如果没有强大的训练芯片,则难以保障算法模型产出的效率。千亿级中文NLP(自然语言处理)大模型“鹏程·盘古”,面向生物医学领域的“鹏程·神农”平台的发布,都离不开AI芯片的支撑。

再比如,被视为“AI领域操作系统”的AI框架,90%的AI应用是基于AI框架层来开发。在该领域国内 科技 企业已取得重大成果: 业界领先的AI计算框架升思MindSpore,是一款支持端、边、云全场景的深度学习训练推理框架。 除具备自主可控的优势之外,一套框架即可支持AI+科学计算等多样性应用。当前升思MindSpore社区累计下载量超过60万,有超过100家高校选择升思MindSpore进行教学。

正是有了这些AI芯片和AI框架释放出的AI算力,我们才能加速进入万物互联和人工智能时代。

今天,从每个人手里的手机,到企业的云上平台,再到城市大脑……我们的生产和生活越来越依赖于AI,越来越深入向AI获取力量。

对中国来说,AI是从制造大国向制造强国转型升级的关键。 最近多年,众多城市都在努力争夺各种资源提升城市的发展力和竞争力,而AI算力就是未来发展最重要的“资源”。

在人工智能的世界,没有AI算力,就像没有电。

AI算力已渗入到我们生活和生产的方方面面,以大家较为熟悉的医院药房取药为例:

拿到处方药单,在药房前排队等候,由医务人员拿着处方照单分药,这种漫长的等待和焦虑,很多人都有切身体会。现在,已经有企业开发出利用人工智能技术进行全自动补发药品的机器人,用到了3D视觉定位、机器人智能抓取、智能视觉复核技术,能够确保100%补药准确率,而且效率也更高,发药速度可以达到每小时2500盒,8秒钟就可以处理一个订单。在药品发放过程中,系统可以自主调度搬运药品,不需要人工的干预。

它带来的最直观的改变,就是可以把药品分拣的时间从原来的50秒缩短到3秒,患者只需要一分钟就能取到药品。

这个过程中,怎么识别处方单,怎么准确分拣并发放药品?要实现这些功能就得看这个机器人使用的AI系统能算得有多快、多好、多准,这就是AI算力。

【要有电 就得有电厂和电网】

AI算力如此重要,但很多企业缺乏足够的资金来搭建自己的AI算力。那AI算力需求该如何被满足,国家、城市又该如何提供足够的AI算力支持,推动AI产业发展并赢得AI时代的竞争力呢?答案是, 要让AI算力成为公共资源,配套建立新型基础设施。

这种新型的算力基础设施就是人工智能计算中心,用回电气时代的比喻,那就是要建电厂和电网。

首先是,加快人工智能计算中心的建设。

人工智能计算中心,是以基于人工智能芯片构建的人工智能计算机集群为基础,涵盖了基建基础设施、硬件基础设施和软件基础设施的完整系统,其核心功能就是,提供从底层芯片算力释放到顶层应用使能的人工智能全栈能力,也就是输出AI算力。

人工智能计算中心除了是提供公共算力服务的平台,还同时应该是应用创新的孵化平台、产业聚合发展平台和科研创新人才培养平台。只有同时扮演好这些角色,才能打通“政产学研用”,集中最多的力量,形成产业汇聚力并提升AI竞争力。

目前,全世界都在加快人工智能计算中心建设。尤其是美国,它一方面千方百计地打压其它国家的发展,一方面则大手笔投入加强本国人工智能的发展,拜登政府更一度公布了3000亿美元的投资计划,捍卫美国在人工智能领域的领先地位,而其中很重要的投入,就是加强数据中心和智算中心的新基建。

中国当然不会轻易错过人工智能产业发展带来的机遇。早在2017年,国务院就发布了《新一代人工智能发展规划》,并强调要“建设高效能的计算基础设施”。去年疫情期间,中央进一步明确提出新基建战略,而加强数据中心和人工智能计算中心建设,则是整个新基建的重中之重。

因为,没有强大的算力,以数字化为着眼点的新基建七大领域几乎都无法实现其建设目标。

国家战略指引,市场前景召唤,甚至经济转型升级的压力下,诸多地方政府都已积极行动,牵头人工智能计算中心建设,并以此为基础提升本地算力水平,构筑数字时代的核心竞争力。

今年5月31日, 科技 部批复的15个国家人工智能创新发展试验区中,武汉的人工智能计算中心已率先竣工并投入运营;西安未来人工智能计算中心也已经上线,其它省市的人工智能计算中心建设也陆续规划中。

武汉人工智能计算中心投运以后,为武汉乃至湖北地区的经济发展、科研创新、企业转型等提供了算力支撑。

比如,武汉大学基于武汉人工智能计算中心打造了全球首个遥感专用框架武汉.LuojiaNet,针对“大幅面、多通道”遥感影像,在整图分析和数据集极简读取处理等方面实现了重大突破。

再比如,中科院自动化所利用该中心的算力支持,研发了全球首个视频生成多模态大模型——紫东.太初。作为业内首个千亿级三模态大模型,紫东.太初的视频理解与描述性能已做到全球第一,不仅具有多任务联合学习能力,还能通过学习实现AI化的图文搜索,以及音频、短视频、MV制作,极大缩短音视频的创造时间。

9月份,西北地区第一个人工智能计算中心落子西北重镇西安市,一期规划具备300P AI算力的西安未来人工智能计算中心,基于升腾AI基础软硬件平台建设,将提供精准可靠的模型训练及推理。

西安未来人工智能计算中心,已经签约了西安电子 科技 大学遥感项目、西北工业大学语音大模型项目、陕西师范大学“MindSpore研究室”多个项目,在支撑西安“6+5+6+1”现代产业体系发展的同时,也会强化西安乃至整个西北地区的人工智能产业集群,为西北地区人工智能产业的发展提供算力支持。

刚刚上线的西安未来人工智能计算中心,算力使用率已快接近满负荷状态。当地各行业企业、科研机构、高校对于算力的渴求可见一斑。

其次,高效利用人工智能计算中心的算力资源。

当越来越多人工智能计算中心建成、投运,如何让它们的算力更高效并服务到更多的行业和企业?如何避免各地算力分布不均衡、使用效率不一致的情况?如何让没有规划建设人工智能计算中心的地方,也能享受到AI算力的使能?人工智能计算中心之间的互联、协同、共享,成为需要各界考虑的一个问题。

这就需要人工智能算力网络了,就像电网之于电厂和用电对象。

有了算力网络,我们就能将分布在各地的人工智能计算中心节点连接起来,动态实时根据算力资源状态和需求,实现统筹分配和调度计算任务,构成全国范围内的感知、分配、调度人工智能中心的算力网络,然后在此基础上汇聚和共享算力、数据、算法资源。

最重要的是,有了这张网,更多的行业和企业,就能像现在用电一样使用AI算力了。

那么,算力网络这张网还会给整个人工智能行业有哪些作用呢?

首先是算力的汇聚, 就是把不同地区、不同城市的算力资源高速互联,实现跨节点之间的算力合理调度,资源弹性分配,这有利于提升各个人工智能计算中心的利用率,实现对于整体能耗的节省,后续可支持跨节点分布学习,为大模型的研究提供超级算力。

其次是数据的汇聚, 政府牵头与各行业企业合作,在达成人工智能领域的公共数据开放之后,可依托人工智能计算中心汇聚高质量的开源、开放的人工智能数据集,能够促进人工智能领域的算法开发和行业落地。

最后是生态的汇聚, 各个人工智能计算中心之间,统一互联标准、应用接口标准,实现网络内大模型能力开放与应用创新成果共享,强化跨区域科研和产业协作,为全国范围用户进行人工智能应用创新提供更多的资源选择和更便捷的合作方式,加速产业聚合,激活产业共融共生。

简单总结算力网络,就是汇聚大数据+大算力,使能大模型和重大科研创新,孵化新应用。进而实现算力网络化,降低算力成本,提升计算能效。

科技 部在三年行动规划中指出,要“布局若干人工智能计算中心,形成广域协同的人工智能平台”。在这一规划的指引下,人工智能计算中心陆续在许多城市落地。就在刚刚结束的HC2021上,20多个人工智能计算中心建设城市联合点亮了“人工智能算力网络”。

这张人工智能行业的算力网络,已经开始编织构建。

【AI算力建设 不是从长计议而是迫在眉睫】

2020年,麻省理工学院计算机科学家、并行计算先驱Charles Leiserson在《科学》杂志上撰文指出:

深度学习正逼近现有芯片的算力极限。

事实上,过去十年,人类最好的AI算法对算力的需求几乎增长了100万倍,平均每3.4个月翻一倍。

相比之下,全球AI算力的增长却十分有限。

需求与供给之间的巨大鸿沟,促使各国政府,尤其是中、美、欧、日等AI技术领先的地区大力建设AI算力。

没有强大AI算力,一个国家或地区必然在未来的 科技 竞争中处于劣势。

从当前算力基础设施建设进度来看,深圳、武汉、西安等城市均已建成人工智能计算中心并投入运营,成都、河南等城市正在建设中,北京、南京、上海等地的人工智能计算中心加速建设,也是蓄势待发。

未来,一旦人工智能计算中心全部建成,并组成人工智能算力网络,不但将为 社会 提供跨地域、源源不断的超级算力。而且,还能够实现跨区域的科研和产业协作,使能大模型和重大科研创新,为千行百业孵化新应用。

最终,使得人工智能赋能更多的行业和场景,让我们在未来国家之间的产业和 科技 竞争中立于不败之地。

——END——

版权所有,禁止私自转载!

推进什么建设培育人工智能

1、推进国家大数据综合试验区和贵阳大数据科创城建设,培育壮大人工智能、大数据、区块链、云计算等新兴数字产业。

2、加快推进东数西算工程,布局建设主数据中心和备份数据中心,建设全国一体化算力网络国家枢纽节点,打造面向全国的算力保障基地。

如何建设人工智能企业的计算中心

这几点可能要考虑一下:

需要实时在线;

需要有巨大吞吐能力;

需要实时动态调整计算能力;

需要实时引入;

需要设立可控学习环境;

需要有动态部署能力;

需要有应用热插拔能力;

什么是人工智能计算中心 一中心四平台

1、2020年10月11日,在武汉市国家新一代人工智能创新发展试验区启动仪式上,中国科学技术信息研究所、华为技术有限公司联合发布《人工智能计算中心发展白皮书》,共4个章节,分别介绍了人工智能计算中心的概念、发展现状、总体架构和关键技术以及加快发展我国人工智能计算中心的建议。

2、会上,武汉人工智能计算中心项目正式启动建设。计算中心将围绕武汉市国家新一代人工智能创新发展试验区,重点打造一中心四平台,以人工智能计算中心为主体,提供公共算力服务平台、应用创新孵化平台、产业聚合发展平台和科研创新人才培养平台,助力武汉市智能制造、智慧医疗、智能数字设计与建造、智能网联汽车产业发展。

3、“不要盲目地重复建设和盲目地去抢占计算中心这样的基础资源,未来整体的全球经济可能不会迅速走出低谷,在财力有限的情况下,我们要聚集有限的资源和财力,打造支撑人工智能产业和生态发展的基础设施。”赵志耘说:人工智能技术仍在不断演进和变化,人工智能计算中心在建设过程中也会不断面临新的形势和挑战。我国人工智能计算中心的重点工作是解决“自主化”的问题,让关键技术安全、可靠。

4、赵志耘表示,我国已经批复的人工智能试验区有13个,未来还将批复其他的人工智能试验区。选择第一个计算中心开工建设的实验区发布“白皮书”,具有标志性的意义,它将引领未来实验区的建设。

结语:以上就是首席CTO笔记为大家整理的关于人工智能中心怎么建设的全部内容了,感谢您花时间阅读本站内容,希望对您有所帮助,更多关于人工智能中心怎么建设的相关内容别忘了在本站进行查找喔。


本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。
如若转载,请注明出处:/AI/17403.html