导读:今天首席CTO笔记来给各位分享关于人工智能为什么gpu的相关内容,如果能碰巧解决你现在面临的问题,别忘了关注本站,现在开始吧!
为什么说深度学习需要GPU呢?
研究深度学习和神经网络大多都离不开GPU,在GPU的加持下,我们可以更快的获得模型训练的结果。深度学习和神经网络的每个计算任务都是独立于其他计算的,任何计算都不依赖于任何其他计算的结果,可以采用高度并行的的方式进行计算。而GPU相比于CPU拥有更多独立的大吞吐计算通道,较少的控制单元使其不会受到计算以外的更多任务的干扰,所以深度学习和神经网络模型在GPU的加持下会高效地完成计算任务。我们公司的GPU用的就是思腾合力家的,思腾合力深思系列产品就很适用于人工智能和深度学习训练等多领域GPU服务器,产品还挺好用
GPU发展和现状是什么样的?
全球GPU芯片行业发展历程
在1984年之前,GPU原本只是用于图形和图像的相关运算,受CPU的调配,但随着云计算、AI等技术的发展,GPU并行计算的优势被发掘,在高性能计算领域逐渐取代CPU成为主角。1999年,NVIDIA公司在发布其标志性产品GeForce256时,首次提出了GPU的概念。2006年,NVIDIA发布了第一款采用统一渲染架构的桌面GPU和CUDA通用计算平台,使开发者能够使用NVIDIAGPU的运算能力进行并行计算,拓展了GPU的应用领域。2011年,NVIDIA发布TESLAGPU计算卡,正式将用于计算的GPU产品线独立出来,标志着GPU芯片正式进入高性能计算时代。
全球GPU芯片出货量超过4.6亿片/年
近些年,全球GPU技术快速发展,已经大大超出了其传统功能的范畴,除了满足目前大多数图形应用需求,在科学计算、人工智能及新型的图形渲染技术方面的技术应用日益成熟,进而推动全球GPU芯片市场的持续高速发展。
从全球GPU芯片出货量来看,根据全球知名调研机构JPR数据,从2021年各个季度来看,全球GPU芯片的季度出货量维持在1-1.3万片之间,2021年全年出货总量超过4.6亿片。
全球集成GPU芯片出货量占比超八成
GPU芯片主要可分为独立GPU(封装在独立的显卡电路板上,使用专用的显示存储器,一般来讲,其性能更高)和集成GPU(集成GPU常和CPU共用一个Die,共享系统内存)。
目前,全球集成GPU出货量占比超过八成,占据绝大部分市场份额;但从占比变化趋势来看,独立GPU的市场份额有所增长,反映出市场对高性能GPU芯片需求有所增长。
注:内环2020年q4,外环2021年q4数据。
预计2027年全球市场规模超过320亿美元
根据IC Insights数据,2015-2021年全球GPU芯片市场规模增速超过20%,2021年,全球GPU芯片市场规模超过220亿美元。
根据JPR资料,预计2022-2026年,全球GUP出货量将实现6.3%复合年增长,以此增长率测算2027年全球GPU芯片行业市场规模将超过320亿美元。
—— 更多本行业研究分析详见前瞻产业研究院《中国GPU芯片行业市场前瞻与投资战略规划分析报告》
简要介绍当前为人工智能提供算力的芯片类型及特点
给人工智能提供算力的芯片类型有gpu、fpga和ASIC等。
GPU,是一种专门在个人电脑、工作站、游戏机和一些移动设备(如平板电脑、智能手机等)上图像运算工作的微处理器,与CU类似,只不过GPU是专为执行复杂的数学和几何计算而设计的,这些计算是图形渲染所必需的。
FPGA能完成任何数字器件的功能的芯片,甚至是高性能CPU都可以用FPGA来实现。 Intel在2015年以161亿美元收购了FPGA龙 Alter头,其目的之一也是看中FPGA的专用计算能力在未来人工智能领域的发展。
ASIC是指应特定用户要求或特定电子系统的需要而设计、制造的集成电路。严格意义上来讲,ASIC是一种专用芯片,与传统的通用芯片有一定的差异。是为了某种特定的需求而专门定制的芯片。谷歌最近曝光的专用于人工智能深度学习计算的TPU其实也是一款ASIC。
第三代人工智能的起点是GPU
不是。人工智能技术发展的起点,是人在生产劳动过程中经验的积累。在人工智能技术体系中,专家系统和机器学习技术扮演着最重要的角色,所以我们将着重分析人工智能技术的这两个分支。无论是专家系统还是机器学习,它们的本质都是将人的经验以不同的形式转化为让机器可以独立决策的计算机算法。
结语:以上就是首席CTO笔记为大家整理的关于人工智能为什么gpu的全部内容了,感谢您花时间阅读本站内容,希望对您有所帮助,更多关于人工智能为什么gpu的相关内容别忘了在本站进行查找喔。