首页>>人工智能->工业上人工智能有哪些(2023年最新分享)

工业上人工智能有哪些(2023年最新分享)

时间:2023-12-11 本站 点击:0

导读:很多朋友问到关于工业上人工智能有哪些的相关问题,本文首席CTO笔记就来为大家做个详细解答,供大家参考,希望对大家有所帮助!一起来看看吧!

人工智能包括哪些方面?

人工智能共涉及九大板块,具体包括:1、核心技术板块(AI芯片、IC、计算机视觉、机器学习、自然语言处理、机器人技术、生物识别技术、人脸识别技术、语音识别、大数据处理等)2、智能终端板块(VR/AR、人工智能服务平台、家居智能终端、3G/4G智能终端、金融智能终端、移动智能终端、智能终端软件、智能硬件、软件开发平台、应用系统等)3、智慧教育板块(教育机器人、智慧教育系统、智慧学校、人工智能培训等)4、智能机器人板块(服务机器人、农业机器人、娱乐机器人、排险救灾机器人、医用机器人、空间机器人、水下机器人、特种机器人等)5、智慧城市及物联网板块(智慧交通,智能电网,政务大数据应用,公共安全、智慧能源应用,智慧社区、智慧城建,智慧建筑,智慧家居,智慧农业、智慧旅游、智慧办公、智慧娱乐,智慧物流、智慧健康保障、智慧安居服务、智慧文化服务等)6、智慧医疗板块(医疗影像人工智能、智能辅助诊断提醒/临床决策诊断系统、外科手术机器人、医疗服务机器人、医疗语音识别录入、混合现实技术医疗大数据平台、数据分析系统(BI)、精准医疗等)7、智能制造板块(智能化生产线、工业机器人、工业物联网、工业配件等)8、智能汽车板块(汽车电子、车联网、自动驾驶、无人驾驶技术、激光雷达、整车厂商等)9、智慧生活板块(未来生活模式、智能生活家居、智能家电、3C电子、智能穿戴等)

评论

人工智能在工业领域的运用有哪些呢?

目前不同行业在智能制造方面,有很多优秀的解决方案和案例分享一个工业混流制造方向的智能制造智能制造-玻璃加工-混流制造华域云脑方案玻璃加工具有在不改变生产组织方式的前提下,在同一条流水线上同时生产出多种不同型号、不同尺寸、不同数量的产品的特征,属于典型的混流制造。相对于单一产品流水线而言,混流生产系统既可以大批量生产标准产品, 也可以按照客户订单生产小批量非标准产品,因而具有更高的灵活性,可满足客户对 产品的多样化需求,使企业快速响应市场变化。随着经济发展、消费升级混流制造将会变成制造业普遍采用的一种生产组织方式,具有广阔的应用前景。 因此混流制造一致是生产、学术研究的重点,但是过去玻璃加工领域的研究方向主要集中在单机设备的改进上,试图在单机设备上一次完成玻璃深加工的所有工序;也取得了一些成果,目前全球范围内有Bottero、Intermac、Bavelloni三家公司生产高速数控玻璃加工中心控制系统能够全自动实现钻孔、切割、粗磨、精磨、抛光加工,但也没有完成玻璃加工的所有工序,且售价昂贵。针对玻璃加工业行业没有功能完全的玻璃加工控制系统,不能一次完成全部的玻璃加工工序,设备整体应用的局限性大,劳动强度大,产品加工效率相对较低等问题。华域云脑提出了一种针对玻璃加工企业的智慧工厂方案,将各个设备、工序连接起来进行统一调度和管理从而达到减员、增效、提升品质、辅助决策等目的。 智慧工厂采用传感技术、通信技术、工控技术,以RFID-MES、VMS(电子看板)、ERP、大数据统一决策系统为核心,实现玻璃加工的生产信息化、管理精细化、调度统一化。方案特点如下: (1) 生产信息化/自动化:实现切片、磨边、钻孔、钢化、夹胶、镀膜、中空、包装八道工序的全自动,降低生产成本,提高加工效率。 (2) 管理精细化:将RFID系统、设备控制系统、MES系统有机集成,实时反馈产品加工信息、现场异常信息、设备信息,形成完整的反馈控制系统。 (3) 调度统一化:基于产品加工状态、工序状态、设备状态等现场信息实现订单、设备的统一调度,同时引入深度学习算法使得调度结果最优化。南京华域云脑信息科技有限公司

工业人工智能的关键技术

(1)硬件

人工智能必须依靠算力、算法和数据,这些需要硬件为基础,必须具备专门的图像、语音等处理能力强、运算速度高的硬件。在分散处理、现场传感检测时,通常采用专门的人工智能(AI)芯片作为底层硬件,通常称为边缘计算网关。AI芯片按架构体系分为通用芯片CPU和GPU(图像处理单元)、半定制芯片FPGA、全定制芯片ASIC和模拟人脑的新型类脑芯片;按照应用场景可分为训练芯片、推断芯片、终端计算芯片等。人工智能先采用训练芯片训练数据得出核心模型,接着利用推断芯片对新数据进行判断推理得出结论,模型和推理也可以从已有的SDK(软件工具开发包)中获取,终端计算芯片主要采用简单实时性能的边缘计算控制输出。

(2)传感

人工智能场景中面对丰富多样和大量的各种数据及相关技术,其中绝大部分数据来源于传感器。传感器能将被测量的各种信息转变成相关数字信号,通常需要将电量、物理量、生物量、视觉、味觉、听觉等进行感知,涉及到感知的精度、速度等。一种新型传感器的发明,往往可以开发出相应的仪器装置。传感器分为常规传感器和智能传感器:常规传感器可以直接采集转换处理压力、温度、流量、电压等信号;智能传感器是具有信息处理功能的传感器。智能传感器带有微处理机,具有采集、处理、交换信息的能力,是传感器集成化与微处理机相结合的产物。与一般传感器相比,智能传感器通过软件技术可以实现低成本、高精度的信息采集,具有编程自动化、功能多样化等显著特点,已广泛应用于各种视觉、听觉、物理量和电量等传感检测。

(3)检测

工业人工智能系统的各个环节涉及供应链、产品生产质量、设备状态、能耗、生产环境等,这些需要大量的生产前期各种基础、生产物流、设备和环境等外界状态感知数据收集,并进行数据融合分析。这些检测的精度、速度、可靠性、分析能力等性能以及价格决定了生产应用的基础。目前成品和部件从离线集中式检测,逐步转变为加工在线、实时、嵌入到生产线及设备内部的检测;从独立的感知和检测转变为多传感器、多元异构数据的融合分析;从当前数据状态转变为数据标准化和溯源。检测延伸就包含了诊断,当生产过程异常导致产品质量下降或者事故时,利用传感器采集关键设备、生产线运行以及产品质量等获得各种智能检测数据,进行自动特征提取,采用大数据分析、深度学习等方法进行高精度智能诊断及溯源。

(4)数据

人工智能是建立在强大数据分析基础上的,现在计算机的大容量、高速运算能力和网络云平台给大数据应用提供了极大的可行性和便利性。大数据通常用来形容各行各业运行过程中发生的大量不同时序、多元异构的数据,往往看起来这些数据关联性不够紧密,在关系型数据库中分析时需要花费大量时间和资源进行处理。大数据不只是数据量大,而且数据种类多。要求实时性强。数据所蕴藏的价值大。各行各业均存在大数据,但是众多的信息和咨询是纷繁复杂的,需要搜索、处理、分析、归纳、总结其深层次的规律,获得规律性、有用的数据。

(5)建模

建模是认识生产过程对象和控制方法的最基本环节,不同产品、生产过程和控制要求涉及的模型差异较大,甚至难以找到相关的模型。特定模型包含工业生产过程的机制与知识,表达了生产设备、工艺参数、原材料和产品质量效率间的映射关系,设备或关键部件的退化机制,产线运行状况和工序之间的耦合关系。人工智能控制对象更加复杂和多样,往往是多输入多输出的多变量系统、非线性系统、时变系统。要求控制系统更快、精、复杂时,必须采用状态空间法、离散模型、人工智能等理论进行建模和控制。

(6)决策

决策包括优化、调度和控制等。由于产品、工艺和设备等不同,决策的方式差别很大。复杂工业生产通常由多工序、多台套设备和不同加工要求组成,涉及实时市场信息、生产条件以及运行工况,企业目标、计划调度、运行指标、生产指令与控制指令一体化优化等,需要协同企业管理者和生产管理者的知识并进行智能化处理。以ERP和MES变革为人机合作的管理与决策智能化系统,利用监测设备和产线运行状态的数据,借助智能优化算法,协同调度各个生产工序,控制相关的生产设备和工艺环节,实现生产全流程的产品质量、产量、消耗、成本等综合生产指标控制,保证生产全流程的整体优化运行决策。自主智能控制系统感知生产条件变化,相互协同,解决多目标冲突、干涉和多尺度现象,兼顾各种因素和权重影响,制定相应的优化决策目标,实现制造与生产全流程全局优化。

(7)预测

预测技术分为模型方法和数据驱动方法,在预测性维护、需求预测、质量预测等方面应用广泛。预测大多用于智能制造中设备维护,但是预测对工业生产整体或者其他关键环节的作用更加重要,比如产品成本价格和质量的趋势、产品原材料成本和质量的趋势、产品销售方式和市场趋势等,这些比起设备维护的预测可能更加重要。比如最近缺芯事件对 汽车 产业的影响、原材料涨价对产品的影响等,其影响远远超过制造产品效率的提升。大数据技术、云服务技术和人工智能技术的快速发展促进了预测技术不断提升。

预测性维护可利用工业设备运行数据和退化机制经验知识,预测设备剩余正常工况使用时间并制定维修策略,从而实现高效安全运行。需求预测根据厂商 历史 订单数据、市场预测及生产线运行状况,调节原料库存、指导生产出货进度,进行风险管理并减少生产浪费。质量预测通过产线、原料状态及相关生产数据分析产品质量,并将生产流程调整为最佳产出状态以避免残次品,数字孪生技术可以有效促进质量预测。

人工智能产品有哪些

人工智能产品如下:

具体的:

1. 人脸检测和识别。

2. 泛图像识别 (延伸到视频): 例如看看照片里都出现了什么物品,识别下logo之类的。

3. 语言识别:例如Siri和各种音箱的底层技术。

4. 聊天机器人:自然语言处理的应用 :首先分析意图,之后去数据库里面召回相关的对话。

5. 智能搜索 、推荐。

6. 时间序列预测性问题:胜者为王。通过AI来预测股价等等。

7. 机器人相关应用:其实吧,如果只是仓库里面的机器人不出去,直接彻底overfit了训练集就行了,没必要考虑泛化。

目前仍未知的:

1. 自动驾驶:没有装雷达的车,我看着就躲。

2. NLG: 文本生成不可控,人工审核不能避免,效率提升不明确。

3. 图像生成:换脸等技术。要想工业化还有段路要走。

比如阿尔法围棋(AlphaGo)是第一个击败人类职业围棋选手、第一个战胜围棋世界冠军的人工智能机器人,由谷歌(Google)旗下DeepMind公司戴密斯·哈萨比斯领衔的团队开发。其主要工作原理是“深度学习”。

结语:以上就是首席CTO笔记为大家整理的关于工业上人工智能有哪些的相关内容解答汇总了,希望对您有所帮助!如果解决了您的问题欢迎分享给更多关注此问题的朋友喔~


本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。
如若转载,请注明出处:/AI/24286.html