首页>>人工智能->什么专业适合学习人工智能(2023年最新整理)

什么专业适合学习人工智能(2023年最新整理)

时间:2023-12-12 本站 点击:0

导读:本篇文章首席CTO笔记来给大家介绍有关什么专业适合学习人工智能的相关内容,希望对大家有所帮助,一起来看看吧。

学人工智能报什么专业 学什么比较好

想学人工智能专业可以报考人工智能专业,也可以报考相关的数据科学与大数据技术、智能感知工程、数字经济、区块链工程、虚拟现实技术、工业智能等专业。目前人工智能领域的人才非常紧缺,人工智能专家基本都集中于顶尖的大学,而人工智能技术好的教师当然也会选择重点大学去执教,所以如果大家实力够强,我还是建议去报考重点大学的人工智能专业。

人工智能专业介绍

人工智能作为中国普通高等学校本科专业,是一个以计算机科学为基础,由计算机、心理学、哲学等多学科交叉融合的交叉学科、新兴学科,研究开发用于模拟延伸和扩展人的智能的理论、方法、技术及应用系统的一门新的技术科学,努力了解智能的实质,并生产出新的能以人类智能相似的方式做出反应的智能机器,包括机器人、语言识别、图像识别、自然语言处理和专家系统等。

人工智能专业的主要课程

人工智能专业一般会开设数学基础课程(微积分、线性代数、数理统计等)和计算机基础(数据结构、程序设计基础等),在此基础上也会开设专业课加深人工智能专业理论和技术学习(深度学习、机器学习等)。

具体核心课程有:人工智能导论、高级语言程序设计、Python程序设计、离散数学、数据结构、机器学习、深度学习、信号与系统、计算机视觉、数字信号处理、数字图像处理、统计学、模式识别、随机过程、优化方法、人工智能系统综合设计、数据挖掘、自然语言处理、几何感知与智能、智能硬件与交互设计、虚拟现实与增强现实、区块链、认知心理学、生物启发智能。

学人工智能选什么专业

人工智能是研究、开发用于模拟、延伸和扩展人的智能的理论、方法、技术及应用系统的一门新的技术科学,是一门交叉学科,数学理论和计算机技术是其重要的组成部分。该领域的研究主要包括图像识别、语言识别、专家系统、自然语言处理和机器人科学等。成都加米谷大数据培训机构,数据分析与挖掘3月即将开课,欢迎预约免费试听。当前,中国的 AI 市场主要分为以下几个领域:

1) 基础服务如数据源和计算平台

2) 硬件产品如工业机器人和服务机器人

3) 智能服务如智能客服和商业智能

4) 技术能力如图像识别和机器学习

目前大学和人工智能有关的专业,大致有些:

数据科学与大数据技术

计算机科学

软件工程

应用数学

智能科学与技术等

想做工程开发类,可以选计算机方向。例如:计算机科学,软件工程等专业。目前,最对口AI方向的专业是计算机科学。 AI工作不仅需要非常扎实和广泛的数学基础,同时也要求具备很高的实操能力。

想做学术研究类,可以选统计学及数学计算方向。比如线性代数,微积分,概率统计、数值计算等,人工智能对数学功底的要求是比较高,目前人工智能的实践主要由于机器学习的发展,理论基础涵盖统计学,概率论,逼近论,凸优化等多门理论,机器学习在本质上是数学计算。

这里顺带提一下大数据、人工智能、云计算三者关系,简单说:云计算是大数据的基础,大数据又是人工智能的基础。成都加米谷大数据培训机构,大数据开发、数据分析与挖掘。

一些职业简介

1、算法工程师。进行人工智能相关前沿算法的研究,包括机器学习、知识应用、智能决策等技术的应用。以机器学习的过程为例,涉及到数据收集、数据整理、算法设计、算法训练、算法验证、算法应用等步骤,所以算法是机器学习开发的重点。

2、程序开发工程师。一方面程序开发工程师需要完成算法实现,另一方面程序开发工程师需要完成项目的落地,需要完成各个功能模块的整合。

3、人工智能运维工程师。大数据与AI产品相关运营、运维产品研发;相关组件的运维工具系统的开发与建设;提供大数据与AI云产品客户支持。

4、智能机器人研发工程师。研发方向主要从事机器人控制系统开发,高精度器件的设计研发等。工业机器人系统集成方向主要做工作站设计,电气设计,器件选型,机器人调试,编程,维护等。

5、AI硬件专家。AI 领域内另外一种日益增长的蓝领工作是负责创建 AI 硬件(如 GPU 芯片)的工业操作工作。大科技公司目前已经采取了措施,来建立自己的专业芯片。

AI人工智能应该学什么专业?读AI的话报考什么专业呢?

想往AI方向发展的话,可以报考以下几个专业:

1、人工智能专业人工智能专业是中国高校人计划设立的专业,旨在培养中国人工智能产业的应用型人才,推动人工智能一级学科建设。

2、计算机科学与技术专业因为人工智能是计算机学科的一个分支,所以想往人工智能发现发展,也可以学习计算机科学与技术专业。计算机科学与技术是国家一级学科,主修大数据技术导论、数据采集与处理实践(Python)、Web前/后端开发、统计与数据分析、机器学习等。

3、软件工程专业软件工程专业是2002年国家教育部新增专业。软件工程专业是一门研究用工程化方法构建和维护有效的、实用和高质量的软件的学科。它涉及到程序设计语言,数据库,软件开发工具,系统平台,标准,设计模式等方面。

4、电子信息专业电子信息专业是一个电子和信息工程方面的较宽口径专业。本专业学生主要学习信号的获取与处理、电厂设备信息系统等方面的专业知识,受到电子与信息工程实践的基本训练,具备设计、开发、应用和集成电子设备和信息系统的基本能力。

5、自动化专业自动化专业是以数学与自动控制理论为主要理论基础,以电子技术、计算机信息技术、传感器与检测技术等为主要技术手段,利用各种自动化装置分析与设计各类控制系统,为人类生产生活服务的一门专业。

学人工智能应该选什么专业?

人工智能技术关系到人工智能产品是否可以顺利应用到我们的生活场景中。在人工智能领域,它普遍包含了机器学习、知识图谱、自然语言处理、人机交互、计算机视觉、生物特征识别、AR/VR七个关键技术。

一、机器学习

机器学习(MachineLearning)是一门涉及统计学、系统辨识、逼近理论、神经网络、优化理论、计算机科学、脑科学等诸多领域的交叉学科,研究计算机怎样模拟或实现人类的学习行为,以获取新的知识或技能,重新组织已有的知识结构使之不断改善自身的性能,是人工智能技术的核心。基于数据的机器学习是现代智能技术中的重要方法之一,研究从观测数据(样本)出发寻找规律,利用这些规律对未来数据或无法观测的数据进行预测。根据学习模式、学习方法以及算法的不同,机器学习存在不同的分类方法。

根据学习模式将机器学习分类为监督学习、无监督学习和强化学习等。

根据学习方法可以将机器学习分为传统机器学习和深度学习。

二、知识图谱

知识图谱本质上是结构化的语义知识库,是一种由节点和边组成的图数据结构,以符号形式描述物理世界中的概念及其相互关系,其基本组成单位是“实体—关系—实体”三元组,以及实体及其相关“属性—值”对。不同实体之间通过关系相互联结,构成网状的知识结构。在知识图谱中,每个节点表示现实世界的“实体”,每条边为实体与实体之间的“关系”。通俗地讲,知识图谱就是把所有不同种类的信息连接在一起而得到的一个关系网络,提供了从“关系”的角度去分析问题的能力。

知识图谱可用于反欺诈、不一致性验证、组团欺诈等公共安全保障领域,需要用到异常分析、静态分析、动态分析等数据挖掘方法。特别地,知识图谱在搜索引擎、可视化展示和精准营销方面有很大的优势,已成为业界的热门工具。但是,知识图谱的发展还有很大的挑战,如数据的噪声问题,即数据本身有错误或者数据存在冗余。随着知识图谱应用的不断深入,还有一系列关键技术需要突破。

三、自然语言处理

自然语言处理是计算机科学领域与人工智能领域中的一个重要方向,研究能实现人与计算机之间用自然语言进行有效通信的各种理论和方法,涉及的领域较多,主要包括机器翻译、机器阅读理解和问答系统等。

机器翻译

机器翻译技术是指利用计算机技术实现从一种自然语言到另外一种自然语言的翻译过程。基于统计的机器翻译方法突破了之前基于规则和实例翻译方法的局限性,翻译性能取得巨大提升。基于深度神经网络的机器翻译在日常口语等一些场景的成功应用已经显现出了巨大的潜力。随着上下文的语境表征和知识逻辑推理能力的发展,自然语言知识图谱不断扩充,机器翻译将会在多轮对话翻译及篇章翻译等领域取得更大进展。

语义理解

语义理解技术是指利用计算机技术实现对文本篇章的理解,并且回答与篇章相关问题的过程。语义理解更注重于对上下文的理解以及对答案精准程度的把控。随着MCTest数据集的发布,语义理解受到更多关注,取得了快速发展,相关数据集和对应的神经网络模型层出不穷。语义理解技术将在智能客服、产品自动问答等相关领域发挥重要作用,进一步提高问答与对话系统的精度。

问答系统

问答系统分为开放领域的对话系统和特定领域的问答系统。问答系统技术是指让计算机像人类一样用自然语言与人交流的技术。人们可以向问答系统提交用自然语言表达的问题,系统会返回关联性较高的答案。尽管问答系统目前已经有了不少应用产品出现,但大多是在实际信息服务系统和智能手机助手等领域中的应用,在问答系统鲁棒性方面仍然存在着问题和挑战。

自然语言处理面临四大挑战:

一是在词法、句法、语义、语用和语音等不同层面存在不确定性;

二是新的词汇、术语、语义和语法导致未知语言现象的不可预测性;

三是数据资源的不充分使其难以覆盖复杂的语言现象;

四是语义知识的模糊性和错综复杂的关联性难以用简单的数学模型描述,语义计算需要参数庞大的非线性计算

四、人机交互

人机交互主要研究人和计算机之间的信息交换,主要包括人到计算机和计算机到人的两部分信息交换,是人工智能领域的重要的外围技术。人机交互是与认知心理学、人机工程学、多媒体技术、虚拟现实技术等密切相关的综合学科。传统的人与计算机之间的信息交换主要依靠交互设备进行,主要包括键盘、鼠标、操纵杆、数据服装、眼动跟踪器、位置跟踪器、数据手套、压力笔等输入设备,以及打印机、绘图仪、显示器、头盔式显示器、音箱等输出设备。人机交互技术除了传统的基本交互和图形交互外,还包括语音交互、情感交互、体感交互及脑机交互等技术。

五、计算机视觉

计算机视觉是使用计算机模仿人类视觉系统的科学,让计算机拥有类似人类提取、处理、理解和分析图像以及图像序列的能力。自动驾驶、机器人、智能医疗等领域均需要通过计算机视觉技术从视觉信号中提取并处理信息。近来随着深度学习的发展,预处理、特征提取与算法处理渐渐融合,形成端到端的人工智能算法技术。根据解决的问题,计算机视觉可分为计算成像学、图像理解、三维视觉、动态视觉和视频编解码五大类。

目前,计算机视觉技术发展迅速,已具备初步的产业规模。未来计算机视觉技术的发展主要面临以下挑战:

一是如何在不同的应用领域和其他技术更好的结合,计算机视觉在解决某些问题时可以广泛利用大数据,已经逐渐成熟并且可以超过人类,而在某些问题上却无法达到很高的精度;

二是如何降低计算机视觉算法的开发时间和人力成本,目前计算机视觉算法需要大量的数据与人工标注,需要较长的研发周期以达到应用领域所要求的精度与耗时;

三是如何加快新型算法的设计开发,随着新的成像硬件与人工智能芯片的出现,针对不同芯片与数据采集设备的计算机视觉算法的设计与开发也是挑战之一。

六、生物特征识别

生物特征识别技术是指通过个体生理特征或行为特征对个体身份进行识别认证的技术。从应用流程看,生物特征识别通常分为注册和识别两个阶段。注册阶段通过传感器对人体的生物表征信息进行采集,如利用图像传感器对指纹和人脸等光学信息、麦克风对说话声等声学信息进行采集,利用数据预处理以及特征提取技术对采集的数据进行处理,得到相应的特征进行存储。

识别过程采用与注册过程一致的信息采集方式对待识别人进行信息采集、数据预处理和特征提取,然后将提取的特征与存储的特征进行比对分析,完成识别。从应用任务看,生物特征识别一般分为辨认与确认两种任务,辨认是指从存储库中确定待识别人身份的过程,是一对多的问题;确认是指将待识别人信息与存储库中特定单人信息进行比对,确定身份的过程,是一对一的问题。

生物特征识别技术涉及的内容十分广泛,包括指纹、掌纹、人脸、虹膜、指静脉、声纹、步态等多种生物特征,其识别过程涉及到图像处理、计算机视觉、语音识别、机器学习等多项技术。目前生物特征识别作为重要的智能化身份认证技术,在金融、公共安全、教育、交通等领域得到广泛的应用。

七、VR/AR

虚拟现实(VR)/增强现实(AR)是以计算机为核心的新型视听技术。结合相关科学技术,在一定范围内生成与真实环境在视觉、听觉、触感等方面高度近似的数字化环境。用户借助必要的装备与数字化环境中的对象进行交互,相互影响,获得近似真实环境的感受和体验,通过显示设备、跟踪定位设备、触力觉交互设备、数据获取设备、专用芯片等实现。

虚拟现实/增强现实从技术特征角度,按照不同处理阶段,可以分为获取与建模技术、分析与利用技术、交换与分发技术、展示与交互技术以及技术标准与评价体系五个方面。获取与建模技术研究如何把物理世界或者人类的创意进行数字化和模型化,难点是三维物理世界的数字化和模型化技术;分析与利用技术重点研究对数字内容进行分析、理解、搜索和知识化方法,其难点是在于内容的语义表示和分析;交换与分发技术主要强调各种网络环境下大规模的数字化内容流通、转换、集成和面向不同终端用户的个性化服务等,其核心是开放的内容交换和版权管理技术;展示与交换技术重点研究符合人类习惯数字内容的各种显示技术及交互方法,以期提高人对复杂信息的认知能力,其难点在于建立自然和谐的人机交互环境;标准与评价体系重点研究虚拟现实/增强现实基础资源、内容编目、信源编码等的规范标准以及相应的评估技术。

目前虚拟现实/增强现实面临的挑战主要体现在智能获取、普适设备、自由交互和感知融合四个方面。在硬件平台与装置、核心芯片与器件、软件平台与工具、相关标准与规范等方面存在一系列科学技术问题。总体来说虚拟现实/增强现实呈现虚拟现实系统智能化、虚实环境对象无缝融合、自然交互全方位与舒适化的发展趋势

结语:以上就是首席CTO笔记为大家整理的关于什么专业适合学习人工智能的相关内容解答汇总了,希望对您有所帮助!如果解决了您的问题欢迎分享给更多关注此问题的朋友喔~


本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。
如若转载,请注明出处:/AI/27066.html