导读:很多朋友问到关于数字化人工智能展怎么参加的相关问题,本文首席CTO笔记就来为大家做个详细解答,供大家参考,希望对大家有所帮助!一起来看看吧!
上海举办人工智能开发者大会,此次大会的主题是什么?
上海举办人工智能开发者大会,此次大会的主题是什么?下面就我们来针对这个问题进行一番探讨,希望这些内容能够帮到有需要的朋友们。
2月26日,WAIC2022上海人工智能开发者大会在上海临港新片区创晶科技中心举行。当场,中国工程院工程院院士、顶尖AI权威专家、企业管理人员聚齐,对焦基础研究和基础设施建设加强、技术革新、人才的培养等关键议题,为人工智能开发者们给予学术论坛、技术性讨论和沟通交流协作的服务平台,输出前端、顶势、网络热点内容为人工智能转型发展再聚力。
此次大会以“搭建融合对外开放新绿色生态”为主题风格,致力于助推人工智能上海堡垒基本建设,切合大城市企业战略转型发展战略,持续上海人工智能技术性生态文明建设,着力解决人工智能开发者真正要求。大会设定了“升腾人工智能开发者”和“实体模型开发者”等多局社区论坛;对于“自动驾驶云计算技术怎样支撑点规模性自动驾驶运输队多地落地式”和“个人隐私测算颠覆式创新数据信息因素安全性商品流通”网络热点议题进行专题研讨。
为了更好地提高与会人员的信任感和徜徉感,大会线上下设定了“升腾ai开发者是如何练成的”“amazon deepracer自动驾驶跑车嘉年华会”“蚂蚁集团支付宝钱包小宠物高新科技嘉年华会”和“紧跟sota的ai开发者”等丰富的俱乐部活动。精彩纷呈的主题活动吸引住了很多AI开发者的参加,在日常生活中提高对新技术的认知能力。
本次开发者大会上,世界人工智能大会上海开发者小区、AI架构发展趋势市场研究报告、“木兰-白玉兰花”对外开放AI数据行动、2021年度最受AI开发者热烈欢迎的技术性工作人员排行榜等当场授牌、公布和运行。将来,WAIC开发者绿色生态还将不断加强与学术界、业内等相关双方的协作,吸引住越来越多的自主创新开发者聚集上海,打造出特点人工智能极克文化艺术,为上海和临港人工智能产业发展规划和合理布局给予强有力支撑点。
人工智能发展的关键是什么?
人工智能作为新一轮科技革命的通用技术,将对经济体系产生重要而深远的影响,对促进经济高质量发展具有重要意义。
目前,人工智能产业发展的基础相对薄弱。数据安全、道德、收入分配、技术泡沫和区域空间等也面临着严峻挑战。
这些挑战不仅包括人工智能本身的缺陷,还包括人工智能发展带来的社会和经济问题。提前规划并妥善解决这些问题是推动人工智能深入发展的关键。
上市公司“竞技”2022世界人工智能大会,对此你怎么看?
首先说明了人工智能取得了巨大的进步,甚至发生了方向性的变化。一踏入会场,就能感受到不一样的氛围。为了吸引观众到展台观展,各家公司展示的AI展品越来越新颖。但另一方面,AI不再高高在上,而是更贴近人们的生活,更深入人心。模仿从网络上获取的训练数据的内容,因此它经常抛出有害内容,包括性别歧视、种族主义、仇外心理等。
其次是人工智能方法构建的预测模型通过计算密集型迭代过程变得越来越准确。在过去的几年里,需要人工标记的数据来训练AI模型一直是成功之路上的主要瓶颈。但是最近,研发的重点已经转移到如何根据数据的内部结构自动创建必要的标签。它会自动生成高度可信的文本,甚至可以理性地回答各种主题的问题,模仿人们可能使用的相同语言。
再者是充分展示人工智能新技术新核心技术、新产业集群、超新场景、敏捷新治理和元界新赛道。通过群智赋能、虚实结合,热情拥抱数字化转型下的智能时代融合、共创、共享美好画面。深入探讨智慧合规风控、AI赋能等行业热点话题,分享AI赋能智慧合规风控的见解和前沿创新。
要知道的是数字经济浪潮席卷全球。作为数字经济时代的关键生产要素,数据和人工智能正在成为科技创新和经济发展的重要驱动力。近年来,我国将发展数字经济上升到国家战略高度,加强数字顶层设计和统筹规划。行业不断探索数字化在各个领域的应用,挖掘人工智能技术的潜力。在政策和市场双重推动下,数字化建设发展迅速,技术红利迅速释放,研发成果不断涌现,应用场景不断拓展。
人工智能专业实习生?
人工智能技术关系到人工智能产品是否可以顺利应用到我们的生活场景中。在人工智能领域,它普遍包含了机器学习、知识图谱、自然语言处理、人机交互、计算机视觉、生物特征识别、AR/VR七个关键技术。
一、机器学习
机器学习(MachineLearning)是一门涉及统计学、系统辨识、逼近理论、神经网络、优化理论、计算机科学、脑科学等诸多领域的交叉学科,研究计算机怎样模拟或实现人类的学习行为,以获取新的知识或技能,重新组织已有的知识结构使之不断改善自身的性能,是人工智能技术的核心。基于数据的机器学习是现代智能技术中的重要方法之一,研究从观测数据(样本)出发寻找规律,利用这些规律对未来数据或无法观测的数据进行预测。根据学习模式、学习方法以及算法的不同,机器学习存在不同的分类方法。
根据学习模式将机器学习分类为监督学习、无监督学习和强化学习等。
根据学习方法可以将机器学习分为传统机器学习和深度学习。
二、知识图谱
知识图谱本质上是结构化的语义知识库,是一种由节点和边组成的图数据结构,以符号形式描述物理世界中的概念及其相互关系,其基本组成单位是“实体—关系—实体”三元组,以及实体及其相关“属性—值”对。不同实体之间通过关系相互联结,构成网状的知识结构。在知识图谱中,每个节点表示现实世界的“实体”,每条边为实体与实体之间的“关系”。通俗地讲,知识图谱就是把所有不同种类的信息连接在一起而得到的一个关系网络,提供了从“关系”的角度去分析问题的能力。
知识图谱可用于反欺诈、不一致性验证、组团欺诈等公共安全保障领域,需要用到异常分析、静态分析、动态分析等数据挖掘方法。特别地,知识图谱在搜索引擎、可视化展示和精准营销方面有很大的优势,已成为业界的热门工具。但是,知识图谱的发展还有很大的挑战,如数据的噪声问题,即数据本身有错误或者数据存在冗余。随着知识图谱应用的不断深入,还有一系列关键技术需要突破。
三、自然语言处理
自然语言处理是计算机科学领域与人工智能领域中的一个重要方向,研究能实现人与计算机之间用自然语言进行有效通信的各种理论和方法,涉及的领域较多,主要包括机器翻译、机器阅读理解和问答系统等。
机器翻译
机器翻译技术是指利用计算机技术实现从一种自然语言到另外一种自然语言的翻译过程。基于统计的机器翻译方法突破了之前基于规则和实例翻译方法的局限性,翻译性能取得巨大提升。基于深度神经网络的机器翻译在日常口语等一些场景的成功应用已经显现出了巨大的潜力。随着上下文的语境表征和知识逻辑推理能力的发展,自然语言知识图谱不断扩充,机器翻译将会在多轮对话翻译及篇章翻译等领域取得更大进展。
语义理解
语义理解技术是指利用计算机技术实现对文本篇章的理解,并且回答与篇章相关问题的过程。语义理解更注重于对上下文的理解以及对答案精准程度的把控。随着MCTest数据集的发布,语义理解受到更多关注,取得了快速发展,相关数据集和对应的神经网络模型层出不穷。语义理解技术将在智能客服、产品自动问答等相关领域发挥重要作用,进一步提高问答与对话系统的精度。
问答系统
问答系统分为开放领域的对话系统和特定领域的问答系统。问答系统技术是指让计算机像人类一样用自然语言与人交流的技术。人们可以向问答系统提交用自然语言表达的问题,系统会返回关联性较高的答案。尽管问答系统目前已经有了不少应用产品出现,但大多是在实际信息服务系统和智能手机助手等领域中的应用,在问答系统鲁棒性方面仍然存在着问题和挑战。
自然语言处理面临四大挑战:
一是在词法、句法、语义、语用和语音等不同层面存在不确定性;
二是新的词汇、术语、语义和语法导致未知语言现象的不可预测性;
三是数据资源的不充分使其难以覆盖复杂的语言现象;
四是语义知识的模糊性和错综复杂的关联性难以用简单的数学模型描述,语义计算需要参数庞大的非线性计算
四、人机交互
人机交互主要研究人和计算机之间的信息交换,主要包括人到计算机和计算机到人的两部分信息交换,是人工智能领域的重要的外围技术。人机交互是与认知心理学、人机工程学、多媒体技术、虚拟现实技术等密切相关的综合学科。传统的人与计算机之间的信息交换主要依靠交互设备进行,主要包括键盘、鼠标、操纵杆、数据服装、眼动跟踪器、位置跟踪器、数据手套、压力笔等输入设备,以及打印机、绘图仪、显示器、头盔式显示器、音箱等输出设备。人机交互技术除了传统的基本交互和图形交互外,还包括语音交互、情感交互、体感交互及脑机交互等技术。
五、计算机视觉
计算机视觉是使用计算机模仿人类视觉系统的科学,让计算机拥有类似人类提取、处理、理解和分析图像以及图像序列的能力。自动驾驶、机器人、智能医疗等领域均需要通过计算机视觉技术从视觉信号中提取并处理信息。近来随着深度学习的发展,预处理、特征提取与算法处理渐渐融合,形成端到端的人工智能算法技术。根据解决的问题,计算机视觉可分为计算成像学、图像理解、三维视觉、动态视觉和视频编解码五大类。
目前,计算机视觉技术发展迅速,已具备初步的产业规模。未来计算机视觉技术的发展主要面临以下挑战:
一是如何在不同的应用领域和其他技术更好的结合,计算机视觉在解决某些问题时可以广泛利用大数据,已经逐渐成熟并且可以超过人类,而在某些问题上却无法达到很高的精度;
二是如何降低计算机视觉算法的开发时间和人力成本,目前计算机视觉算法需要大量的数据与人工标注,需要较长的研发周期以达到应用领域所要求的精度与耗时;
三是如何加快新型算法的设计开发,随着新的成像硬件与人工智能芯片的出现,针对不同芯片与数据采集设备的计算机视觉算法的设计与开发也是挑战之一。
六、生物特征识别
生物特征识别技术是指通过个体生理特征或行为特征对个体身份进行识别认证的技术。从应用流程看,生物特征识别通常分为注册和识别两个阶段。注册阶段通过传感器对人体的生物表征信息进行采集,如利用图像传感器对指纹和人脸等光学信息、麦克风对说话声等声学信息进行采集,利用数据预处理以及特征提取技术对采集的数据进行处理,得到相应的特征进行存储。
识别过程采用与注册过程一致的信息采集方式对待识别人进行信息采集、数据预处理和特征提取,然后将提取的特征与存储的特征进行比对分析,完成识别。从应用任务看,生物特征识别一般分为辨认与确认两种任务,辨认是指从存储库中确定待识别人身份的过程,是一对多的问题;确认是指将待识别人信息与存储库中特定单人信息进行比对,确定身份的过程,是一对一的问题。
生物特征识别技术涉及的内容十分广泛,包括指纹、掌纹、人脸、虹膜、指静脉、声纹、步态等多种生物特征,其识别过程涉及到图像处理、计算机视觉、语音识别、机器学习等多项技术。目前生物特征识别作为重要的智能化身份认证技术,在金融、公共安全、教育、交通等领域得到广泛的应用。
七、VR/AR
虚拟现实(VR)/增强现实(AR)是以计算机为核心的新型视听技术。结合相关科学技术,在一定范围内生成与真实环境在视觉、听觉、触感等方面高度近似的数字化环境。用户借助必要的装备与数字化环境中的对象进行交互,相互影响,获得近似真实环境的感受和体验,通过显示设备、跟踪定位设备、触力觉交互设备、数据获取设备、专用芯片等实现。
虚拟现实/增强现实从技术特征角度,按照不同处理阶段,可以分为获取与建模技术、分析与利用技术、交换与分发技术、展示与交互技术以及技术标准与评价体系五个方面。获取与建模技术研究如何把物理世界或者人类的创意进行数字化和模型化,难点是三维物理世界的数字化和模型化技术;分析与利用技术重点研究对数字内容进行分析、理解、搜索和知识化方法,其难点是在于内容的语义表示和分析;交换与分发技术主要强调各种网络环境下大规模的数字化内容流通、转换、集成和面向不同终端用户的个性化服务等,其核心是开放的内容交换和版权管理技术;展示与交换技术重点研究符合人类习惯数字内容的各种显示技术及交互方法,以期提高人对复杂信息的认知能力,其难点在于建立自然和谐的人机交互环境;标准与评价体系重点研究虚拟现实/增强现实基础资源、内容编目、信源编码等的规范标准以及相应的评估技术。
目前虚拟现实/增强现实面临的挑战主要体现在智能获取、普适设备、自由交互和感知融合四个方面。在硬件平台与装置、核心芯片与器件、软件平台与工具、相关标准与规范等方面存在一系列科学技术问题。总体来说虚拟现实/增强现实呈现虚拟现实系统智能化、虚实环境对象无缝融合、自然交互全方位与舒适化的发展趋势
人工智能与工业互联网关系解析
1.1 核心焦点从上云互通转向借助人工智能深挖工业大数据价值
工业互联网的建设促进了企业IT系统的云化迁移,实现了ICT系统与OT系统间要素的流转,打通了数据孤岛,企业得以获取灵活便捷、高效率、低成本的信息化、网络化、数字化基础,但要想实现真正的数字化和智能化则必须借助人工智能技术对工业数据价值进行充分挖掘。数据是工业互联网的核心资产,也是其价值创造的来源,对数据分析和挖掘的深度在很大程度上决定了工业互联网实际应用价值的高低。目前对数据挖掘价值依赖程度高的生产管控类及设备管理服务类应用是我国工业互联网的高热度场景,结合深度数据分析的设备 健康 管理、生产质量管理、生产工艺优化、能耗与排放管理等应用为工业企业创造了运维成本及能耗成本降低、产品质量及服务价值提升等显著的直接优化价值。
1.2 人工智能是工业互联网实现真正数智化价值的前提
工业互联网之于工业企业而言,是企业实现数字化、网络化、智能化转型的工具,其中平台层搭建了工业数据汇聚与处理的基础,工业软件的应用本质上实现数字化和自动化,强调机器设备的自动化功能,工业互联网的互联工具应用则是强调
企业内外部的打通与协同,是工业角度的互联网+模式,人工智能的加入是在数字化、网络化的基础上实现真正的智能化。工业互联网为工业企业提供通用的算力-工业云计算和边缘计算、算据-工业大数据以及算法-工业人工智能,其中大数据作为人工智能技术发挥作用的必要燃料,其背后价值的挖掘深度决定了工业互联网价值呈现的合理逻辑是从网络化、数字化转而最终实现智能化,这也正是工业企业实现降本增效、升级优化的必经之路。
二、人工智能成为重新定义工业互联网产品逻辑的抓手
强化数据洞察力,拓宽工业互联网可解问题边界
工业互联网的核心是数据驱动的智能分析与决策优化,人工智能技术从广义上来看正是一种通过算法模型对数据的处理方式,人工智能技术因此开始进入工业互联网产品建设方的视野,成为服务商拉高产品价值的落脚点。以深度学习和知识图谱的为代表的人工智能技术从根本上提高系统建模和处理复杂性、不确定性、常识性等问题的能力,显著提升了工业大数据分析能力与效率,为解决工业各领域诊断、预测与优化问题提供得力工具,进一步扩大了工业互联网平台可解工业问题边界的深度和广度。人工智能驱动的工业数据智能分析支撑工业互联网实现数据价值深挖掘,强化了工业企业的数据洞察能力,成为打通智能制造最后一公里的关键环节。
使能工业互联网形成数据优化闭环,催生多场景系统化应用
工业领域内存在着纷繁复杂的应用场景,产品研发设计、产品瑕疵质检、生产工艺优化、流程自动化等许多场景的工业机理复杂、数据分析能力需求较高,人工智能因此被视为是使能工业互联网形成数据优化闭环的关键。目前以深度学习、知识图谱、自然语言处理为代表的人工智能技术正处于多方创新和突破的时期,通过与工业领域知识融合的不断加深,AI技术正逐渐加速向工业互联网渗透,在工业企业“研产供销管”业务链条下形成众多落地应用。从工业AI技术角度来看,主要有声音、图像、知识图谱和自然语言方向的应用,声音和图像多用于质量检测与安全监管两个领域,是目前应用较多,经济效益较为明显的场景;自然语言处理更多用在智能助手,这里有别于智能客服,智能助手更加垂直和专业,如设备维修助手;知识图谱则擅长处理大规模、复杂、多点的问题,典型应用是产品质量回溯。
以解决通用型问题为能力基础,面向特定行业差异化延伸
工业智能的本质是通用人工智能技术与工业场景、机理、知识结合,实现设计模式创新、生产智能决策、资源优化配置等创新应用。工业智能在工业系统各层级各环节已形成了相对广泛的应用,其细分应用场景可达到数十种,正如前文所述工业领域不同细分行业对工业互联网类型与功能的需求各不相同,工业智能亦是如此。不同行业依托工业智能,获取解决通用型问题的能力的同时,基于行业特点、面向行业特性痛点问题延伸出差异化方向。
五、人工智能在工业互联网中的部署
应用部署将从以平台侧为主向平台+边缘共生演进
当前人工智能主要通过三种模式融入工业互联网。第一,直接将AI算法或模型嵌入工业互联网平台层,以提升平台层数据分析能力;第二,提供工业AI软件系统,并通过云端部署形成标准化的工业互联网SaaS层应用;第三,提供一套工业互联网框架下包含软件和边缘侧硬件的完整系统。部署过程中会根据行业类别、产品相似度、场景条件、问题共性等因素对不同AI模型进行组合,对同一个行业来说,针对同一个环节将模型尽量标准化以实现移植应用。现阶段工业智能应用以平台侧为主,后期会向边缘侧发展,边缘侧的实时性要求需要AI模型产出的结论与产线或者设备形成控制闭环,艾瑞认为目前我国工业企业自动化程度不一,现场数据质量不高,并且企业对于人工智能的应用较为保守,时下落地较多的应用无论是安全监管还是质量检测都主要集中于平台侧,边缘侧工业智能的下一阶段发展需要配套基础设施和能力的共建。
六、基于AI的工业互联网参与者拓展思路
技术为先,场景为王,合作共赢
随着《互联网+人工智能三年行动实施方案》、《新一代人工智能发展规划》、《促进新一代人工智能产业发展三年行动计划》等多份国家政策文件的发布,开展人工智能与工业结合应用成为了重要发展趋势。工业领域每个下游行业场景都有
其原生的价值链条,同时各个行业的Know – how有着较高的壁垒,人工智能服务商在开展工业领域业务时,大多基于自身技术优势和特点去寻找适合实景落地的垂直细分行业或者某一共通性工业场景,在特定场景应用中持续打磨自身工业智能产品和服务。“聚焦”被大多数AI厂商视为优先的发展策略,通过与成熟的工业互联网平台型企业开展合作,以融入而非自主开发的方式获取平台能力,不仅极大地减少了自研开发的成本和风险,而且为迭代、优化、创新自身工业智能解决方案提供了丰富的资源储备。
数据、算法、算力的不足制约了AI在工业领域的普及应用
人工智能技术本身的发展离不开数据的支撑,工业领域由于自身复杂、多样且专业性强的行业特性,导致其缺乏优秀的工业主题AI数据模型,也没有很好的工业标注数据集用于AI算法训练。此外包括底层硬件、计算框架、开发平台等AI基础设施在工业领域的建设也较为落后,这直接限制了工业智能化的发展。数据、算法和算力的短板导致了当前AI技术在工业领域的应用场景主要呈现点状分布,普及范围有限。
人工智能在工业领域应用的市场前景广阔
2020年,中国人工智能市场主要客户来自政府城市治理和运营(公安、交警、司法、城市运营、政务、交运管理、国土资源、监所、环保等),互联网与金融行业也位居前列,然而作为国民经济支柱产业的工业在人工智能市场份额中仅占到5%。随着人工智能与工业互联网共同被纳入新型基础设施建设范畴,行业双双提速发展的态势基本确定,加之工业领域多样化的场景需求,预计未来五年,中国工业领域中人工智能技术的使用率将显著提高,工业智能的应用市场前景将十分广阔。
人工智能将重新切割工业互联网投入空间
2020年以机器学习与深度学习、知识图谱、NLP、计算机视觉为技术主导的我国工业智能应用核心产业规模为68亿元,年均复合增长率达到27.96%,产业整体具备高成长性。然而目前人工智能服务商多以自身独立的系统交付工业智能解决
方案,工业互联网平台服务商提供的平台AI功能也以基于开源框架的算法模型自主开发为主,平台AI功能集中于基础性的数据分析能力优化,AI技术并未在工业互联网中实现广泛化应用。总体来看,现阶段工业智能与工业互联网的结合应用呈星点状分布,未来随着工业互联网对数据价值深度挖掘的依赖性提升,人工智能技术将加速向工业互联网融入,工业互联网建设的资金投入比例将重新洗牌。
四大工业智能布局方向助力工业互联网塑造竞争优势
工业互联网的真正价值不在于为工业企业锦上添花而应是雪中送炭,人工智能技术的注入是以系统化的方法和规则助力工业互联网解决工业实际场景中的某些痛点。基于深度学习技术的计算机视觉在质检、巡检等场景中实现了机器代人,在提高生产效率的同时释放了企业人力成本;以知识图谱、自然语言处理为主的认知智能技术,促进了工业知识的积累,提升了企业决策速度与精度;AutoML平台的模型自动化塑造能力则提高了算法模型在实景中的适配性。AI技术的纵向升级使得采用多种路径解决复杂工业问题成为可能,未来融合多种AI技术的工业互联网将是相关服务商打造竞争优势的重要切口。
科大讯飞还能进吗?有人说下吗?
随着科技的发展,人工智能产品也成了我们日常生活所需,生活方式也随之改变。与此同时,资本市场也很看重这个新兴领域,接下来就跟大家扒一扒国内人工智能的头部企业--科大讯飞。在开始分析科大讯飞前,学姐手里有一份人工智能行业龙头股名单,快来看看吧:宝藏资料:人工智能行业龙头股名单
一、从公司角度来看
公司介绍:科大讯飞是一家专业从事语音及语言、自然语言理解、机器学习推理及自主学习等人工智能核心技术研究,人工智能产品研发和行业应用落地的国家级骨干软件企业。科大讯飞作为中国人工智能产业的先行者,在人工智能领域辛勤耕耘二十年,在社会价值方面,公司始终坚持为经济社会发展提供阳光健康、高技术屏障、高附加值。接下来就带大家研究一下这家公司的优势:
优势一、国内人工智能的领导者,技术水平国际领先
科大讯飞以"让机器能听会说,能理解会思考,用人工智能建设美好世界"为宗旨,承建有国家新一代人工智能开放创新平台、语音及语言信息处理国家工程实验室以及认知智能领域的首个国家级重点实验室等国家级重要平台。
优势二、业绩持续高增长,产业生态持续扩大
智慧教育和智慧医疗的发展水平突飞猛进,开放平台、智能硬件、汽车业务展现出了亮眼的风采,其中包括讯飞AI学习机销量持续增长、智医助理业务实现了基层常态化使用、发者数量和质量同步提升以及智能办公本、录音笔等硬件销售大幅增加。同时,公司为开发者团队提供从初生、壮大到商业价值升级的全链路服务,并且讯飞AI营销平台、讯飞智能工业平台等这些能力平台也被建设出来,不停歇地推动着AI行业生态的扩大。考虑到篇幅的问题,科大讯飞的深度报告和风险提示的具体情况,一些我整理的相关信息放在了这篇研报当中,点击的话就可以查看:【深度研报】科大讯飞点评,建议收藏!
二、从行业角度来看
未来2025年世界人工智能市场规模将超过6万亿美元,目前全球AI市场规模已超1万亿美元,中国市场超1千亿元。针对于人工智能产业来说,它形成了企业+行业+人力的全方位变革。企业数字化趋势日益凸显出来,智慧化应用符合消费者潜在需求。无人驾驶、语音识别、专家系统、智适应学习和机器视觉是在近几年中特别受关注的几个应用方向。对于人工智能发展来说,各国政府都非常支持,并将其纳入了国家战略规划,释放积极信号。总的来说,我认为科大讯飞公司作为首屈一指的人工智能企业,有望随着此行业的高速发展而从中获取较大红利。但是文章内容不会超前,好奇科大讯飞未来行情的朋友,赶紧点一下这个链接吧,有专业人士为你出谋划策,看下科大讯飞现在市场情况适不适合买入或卖出:【免费】测一测科大讯飞还有机会吗?
应答时间:2021-08-31,最新业务变化以文中链接内展示的数据为准,请点击查看
结语:以上就是首席CTO笔记为大家整理的关于数字化人工智能展怎么参加的相关内容解答汇总了,希望对您有所帮助!如果解决了您的问题欢迎分享给更多关注此问题的朋友喔~