导读:很多朋友问到关于人工智能的惊艳技巧有哪些的相关问题,本文首席CTO笔记就来为大家做个详细解答,供大家参考,希望对大家有所帮助!一起来看看吧!
人工智能技术有哪些?
工智能计算机科支企图解智能实质并产种新能类智能相似式做反应智能机器该领域研究包括机器、语言识别、图像识别、自语言处理专家系统等。
人工智能(Artificial_Intelligence),英文缩写为AI。它是研究、开发用于模拟、延伸和扩展人的智能的理论、方法、技术及应用系统的一门新的技术科学。
说起人工智能我们大家都很熟悉,各种人工智能概念,AI概念层不出穷,仔细想来无外乎智能音箱、智能打印机、智能售卖机等等诸如此类似乎没多少“智能”,和我们脑海中的“AI印象”,如:终结者、机器人、阿尔法狗、自动驾驶等技术大相径庭。
目前,普遍认为人工智能的研究始于1956年达特茅斯会议,早期人工智能研究中,如何定义人工智能是个喋喋不休的问题,但基调始终是:像人一样决策、像人一样行动、理性的决策、理性的行动等研究方向。
人工智能除了人脸识别、无人驾驶还有哪些行业技/术应用?
人工智能设计方方面面,智能家居,智能工厂,智能学校,智能医院,凡是利用互联网技术和自动化技术以及大数据技术都是人工智能
人工智能技术的特点有哪些?
人工智能时刻改变着你我的生活,人工智能包括十分广泛的科学,它由不同的领域组成,如机器学习,计算机视觉等等,总的说来,人工智能研究的一个主要目标是使机器能够胜任一些通常需要人类智能才能完成的复杂工作。
它的优势特点包含如下:
1、是从人工知识表达到大数据驱动的知识学习技术。
2、是从分类型处理的多媒体数据转向跨媒体的认知、学习、推理,这里讲的“媒体”不是新闻媒体,而是界面或者环境。
3、是从追求智能机器到高水平的人机、脑机相互协同和融合。
4、是从聚焦个体智能到基于互联网和大数据的群体智能,它可以把很多人的智能集聚融合起来变成群体智能。
5、是从拟人化的机器人转向更加广阔的智能自主系统,比如智能工厂、智能无人机系统等。
人工智能的关键技术有哪些
人工智能的关键技术有以下:
1、计算机视觉技术
计算机视觉,简称CV(Computer Vision),是一门研究如何使计算机更好的“看”世界的科学。给计算机输入图片,图像等数据,通过各种深度学习等算法的计算,使得计算机可以进行识别、跟踪和测量等功能一般来说,CV技术主要有如下几个步骤:图像获取、预处理、特征提取、检测/分割和高级处理。
2、自然语言处理技术
自然语言处理(Natural Language Processing)技术是一门通过建立计算机模型、理解和处理自然语言的学科。是指用用计算机对自然语言的形、音、义等信息进行处理并识别的应用,大致包括机器翻译、自动提取文本摘要、文本分类、语音合成、情感分析等。
3、跨媒体分析推理技术
以前的媒体信息处理模型往往是针对单一的媒体数据进行处理分析,比如图像识别、语音识别,文本识别等等,但是现在越来越多的任务需要跨媒体类别分析,即需要综合处理文本、视频,语音等信息。
4、智适应学习技术
智适应学习技术(Intelligent Adaptive Learning),是教育领域最具突破性的技术。该技术模拟了老师对学生一对一的教学过程,赋予了学习系统个性化教学的能力。在2020年之后,智适应学习技术得到了快速发展,背后的推动里有强大的计算能力和海量的数据,更重要的还有贝叶斯网络算法的应用。
5、群体智能技术
群体智能(Collective Intelligence)也称集体智能,是一种共享的智能,是集结众人的意见进而转化为决策的一种过程,用来对单一个体做出随机性决策的风险。
6、自主无人系统技术
自主无人系统是能够通过先进的技术进行操作或管理,而不需要人工干预的系统,可以应用到无人驾驶、无人机、空间机器人,无人车间等领域。
7、智能芯片技术
一般来说,运用了人工智能技术的芯片就可以称为智能芯片,智能芯片可按技术架构、功能和应用场景等维度分成多种类别。
8、脑机接口技术
脑机接口(Brain-Computer Interface)是在人或动物脑与外部设备间建立的直接连接通道。通过单向脑机接口技术,计算机可以接受脑传来的命令,或者发送信号到脑,但不能同时发送和接收信号;而双向脑机接口允许脑和外部设备间的双向信息交换。
9、知识图谱
知识图谱本质上是结构化的语义知识库,是一种由节点和边组成的图数据结构,以符号形式描述物理世界中的概念及其相互关系,其基本组成单位是“实体—关系—实体”三元组,以及实体及其相关“属性—值”对。不同实体之间通过关系相互联结,构成网状的知识结构。
10、人机交互
人机交互主要研究人和计算机之间的信息交换,主要包括人到计算机和计算机到人的两部分信息交换,是人工智能领域的重要的外围技术。
人工智能都有哪些技术?
1、计算机视觉
人们认识世界, 91%是通过视觉来实现。同样, 计算机视觉的最终目标就是让计算机能够像人一样通过视觉来认识和了解世界, 它主要是通过算法对图像进行识别分析, 目前计算机视觉最广泛的应用是人脸识别和图像识别。相关技术具体包括图像分类、目标跟踪、语义分割。
2、 机器学习
机器学习的基本思想是通过计算机对数据的学习来提升自身性能的算法。机器学习中需要解决的最重要的4类问题是预测、聚类、分类和降维。机器学习按照学习方法分类可分为:监督学习、无监督学习、半监督学习和强化学习。
3、自然语言处理
自然语言处理 (NLP) [30]是指计算机拥有识别理解人类文本语言的能力, 是计算机科学与人类语言学的交叉学科。自然语言是人与动物之间的最大区别, 人类的思维建立在语言之上, 所以自然语言处理也就代表了人工智能的最终目标。机器若想实现真正的智能自然语言处理是必不可少的一环。自然语言处理分为语法语义分析、信息抽取、文本挖掘、信息检索、机器翻译、问答系统和对话系统7个方向。自然语言处理主要有5类技术, 分别是分类、匹配、翻译、结构预测及序列决策过程。
4、语音识别
现在人类对机器的运用已经到了一个极高的状态, 所以人们对于机器运用的便捷化也有了依赖。采用语言支配机器的方式是一种十分便捷的形式。语音识别技术是将人类的语音输入转换为一种机器可以理解的语言, 或者转换为自然语言的一种过程。
AI换脸是人工智能一个有趣的功能,那它是通过什么方法实现的?
AI 可以换脸了?以后别人给你视频你也不能相信了。
最近某个 Reddit 用户将“神奇女侠” 盖尔·加朵(Gal Gadot) 的脸,P到了成人视频上,效果相当不错,而且他使用的是时下火爆的机器学习技术。
这一技术的关键在于,替换的脸要和原视频上的脸表情同步。大致原理是通过算法识别出面部的特定结构——不仅仅是眼睛、鼻子、嘴巴的位置,也包括颧骨、下巴、脸颊的形状,然后按照这些特征点做替换。目前这一技术并没有达到以假乱真的地步。
其实类似的面部替换技术,早就被广泛运用在大片里了。例如半兽人、咕噜、阿凡达,它们都用了动作捕捉(Motion Capture)技术。动作捕捉技术常用于电影工业,游戏产业,比如:《加勒比海盗》中的戴维·琼斯(Davy Jones)小岛秀夫的《死亡搁浅》
严格说,这一技术属于动作捕捉技术的一个小类,叫面部捕捉(face capture)。那些脸上的黄点,是表情变化中的关键点,就像脸的“关节”一样,计算机只需要这些信息就能合成表情。而在面部识别技术中,它被称为面部追踪(face tracking)。
绝大多数商业作品只是用这种技术制作奇幻生物,然而工业光魔公司(Industrial Light Magic)更进一步,在银幕上复活了已经故演员。
恐怖片演员彼得·库欣逝世于1994年。2016年在电影《星球大战外传:侠盗一号》中,技术人员将他拉进现代的巨幕。这位“现代”演员的背后是另外一位演员盖·亨利,技术人员捕捉了盖·亨利的表情,然后合成了数字版的彼得·库欣。虽然两位演员的脸挺相似的,但是技术人员仍旧要处理很多细节问题,比如彼得·库欣发“啊”这个音的时候是不动上嘴唇的。
这一技术引发了不少争论,一些人表示不能接受。虽然电影获得了肖像授权,仍旧有一些伦理问题亟待回答,我们应该在荧幕上复活故去的演员么?
深度学习,另辟蹊径
动作捕捉技术的关键在于识别人的表情,特别是脸上那些关键的位点。而深度学习技术也能满足这一要求,一些研究团队甚至演示了伪造美国前总统小布什,奥巴马,现任总统特朗普,以及俄国总统普金的视频。
深度学习技术和那些专门的影视工业技术相比,得到的结果要粗糙很多,更容易识别出来,然而它也要便宜很多。谷歌、微软、亚马逊这些大公司的软件技术和平台都是公开的,深度学习技术飞速发展,很多论文都在研究者之间共享,而且家用级别的显卡就能处理深度学习算法,不一定要用到云计算和超级计算机等技术。
结语:以上就是首席CTO笔记为大家介绍的关于人工智能的惊艳技巧有哪些的全部内容了,希望对大家有所帮助,如果你还想了解更多这方面的信息,记得收藏关注本站。