首页>>人工智能->人工智能时代选什么专业(人工智能时代学什么专业)

人工智能时代选什么专业(人工智能时代学什么专业)

时间:2023-12-13 本站 点击:0

导读:很多朋友问到关于人工智能时代选什么专业的相关问题,本文首席CTO笔记就来为大家做个详细解答,供大家参考,希望对大家有所帮助!一起来看看吧!

学人工智能选什么专业

人工智能是研究、开发用于模拟、延伸和扩展人的智能的理论、方法、技术及应用系统的一门新的技术科学,是一门交叉学科,数学理论和计算机技术是其重要的组成部分。该领域的研究主要包括图像识别、语言识别、专家系统、自然语言处理和机器人科学等。成都加米谷大数据培训机构,数据分析与挖掘3月即将开课,欢迎预约免费试听。当前,中国的 AI 市场主要分为以下几个领域:

1) 基础服务如数据源和计算平台

2) 硬件产品如工业机器人和服务机器人

3) 智能服务如智能客服和商业智能

4) 技术能力如图像识别和机器学习

目前大学和人工智能有关的专业,大致有些:

数据科学与大数据技术

计算机科学

软件工程

应用数学

智能科学与技术等

想做工程开发类,可以选计算机方向。例如:计算机科学,软件工程等专业。目前,最对口AI方向的专业是计算机科学。 AI工作不仅需要非常扎实和广泛的数学基础,同时也要求具备很高的实操能力。

想做学术研究类,可以选统计学及数学计算方向。比如线性代数,微积分,概率统计、数值计算等,人工智能对数学功底的要求是比较高,目前人工智能的实践主要由于机器学习的发展,理论基础涵盖统计学,概率论,逼近论,凸优化等多门理论,机器学习在本质上是数学计算。

这里顺带提一下大数据、人工智能、云计算三者关系,简单说:云计算是大数据的基础,大数据又是人工智能的基础。成都加米谷大数据培训机构,大数据开发、数据分析与挖掘。

一些职业简介

1、算法工程师。进行人工智能相关前沿算法的研究,包括机器学习、知识应用、智能决策等技术的应用。以机器学习的过程为例,涉及到数据收集、数据整理、算法设计、算法训练、算法验证、算法应用等步骤,所以算法是机器学习开发的重点。

2、程序开发工程师。一方面程序开发工程师需要完成算法实现,另一方面程序开发工程师需要完成项目的落地,需要完成各个功能模块的整合。

3、人工智能运维工程师。大数据与AI产品相关运营、运维产品研发;相关组件的运维工具系统的开发与建设;提供大数据与AI云产品客户支持。

4、智能机器人研发工程师。研发方向主要从事机器人控制系统开发,高精度器件的设计研发等。工业机器人系统集成方向主要做工作站设计,电气设计,器件选型,机器人调试,编程,维护等。

5、AI硬件专家。AI 领域内另外一种日益增长的蓝领工作是负责创建 AI 硬件(如 GPU 芯片)的工业操作工作。大科技公司目前已经采取了措施,来建立自己的专业芯片。

在如今人工智能时代,哪些专业受大众热捧?可以考虑吗?

引言:在当今的人工智能时代中,有很多大学专业是新开的,比较受大众的喜爱,就好比说像机器人这种类型的专业。因此对于这种专业也是可以考虑的,而这种专业在大学里面也是属于一种较为热门的专业,而且录取分数线也是相对比较高的。因此如果说想是去选择一个好的学校的话,那么去选择一个热门专业还是比较困难的,因此对于这种专业还是选择一个稍微去低一点的学校,才能去选择这样的专业,因此在热专业热门的同时,也有可能会被调剂。

在学校中报考一定的热门专业的同时,很有可能要担心会因为报考专业分数不够,而被调剂的情况。因此在选择时也是需要格外注意的,而且你不能确保第一志愿就一定能录上,而且还有可能有以下的志愿进行一定的滑档。因此对于专业的选择上面也是需要有众多选择的,而且如果说想拿的比较准的话,还是建议可以报一个分数稍微较低一点的学校,进行一些在分数上的稳拿住,进行一系列的报考,因此在学校的选择上面还是有一些的方法去考虑的。

在当今的人工智能时代,受喜爱的专业有很多,但是去选一些热门专业的同时,要考虑热门专业会不会一定能报上。如果说报上了,那么未来的前景就一定很广吗?在当今时代他很流行,但过了这个时代这个专业是不是能够继续留存下去,也是大众需要继续思考的事情。

所以说去对专业进行选择,还是要根据众多考生们根据自己的真实情况去做一定的选择,也要根据家长们对于时代的判断和对于行业的了解给予考生们一定的建议,所以对于专业的选择也要从学校和城市上面进行一定的出发。

人工智能领域涉及的专业

很多同学在选择专业的时候,就希望能找一些设计人工智能领域的专业,那你知道人工智能领域都涉及的那些专业吗?下面是我为大家收集的关于人工智能领域涉及的专业,希望可以帮助大家。

更多专业相关内容推荐↓↓↓

就业前景好的10大专业排名

2022工资高的专业推荐

高考专业怎么选择最好

选专业要不要服从调剂

人工智能领域涉及的专业

1.计算机科学与技术

人工智能离不开计算机的支持,人工智能本身也算是计算机学科的一个分支。计算机是一个比较传统的专业,发展方向可以有硬件类、软件类、网络管理类等,可以说计算机科学与技术是工科之母,涉及面非常广。

2.软件工程

软件工程专业也是计算机大类专业之一,该专业开设时间比较久,与人工智能的课程体系设置比较接近,而且软件工程也有专门的人工智能方向。这个专业侧重软件技术的开发和应用,课程上更重视编程语言和技术平台的学习,专业性比较强,知识结构较为集中,就业会比较理想。

3.数据科学与大数据技术

大数据算是计算机科学与技术与数学、统计学的交叉学科,会涉及到人工智能的相关课程,该专业要求对数据库、程序设计、计算机网络都有足够了解,通过一些列操作从而获取、储存、分析数据。在信息化时代,大数据有着非常重要的应用,适用于各行业。

4.机器人工程

机器人是一种用最快速和最大精度自动执行一个或多个复杂任务的工具,需要软件、硬件协同发展。机器人工程与人工智能都是用信息技术去模拟人类,只不过机器人工程更侧重硬件方向。

5.智能科学与技术

智能科学与技术本身也属于计算机类,开设时间较早,很多学校都有了较为成熟的 教育 体系,研究方向也是人工智能方向。这个专业应用于控制机器人,将计算机、自动化、智能系统融为一体,工程性和实践性很强。这个专业本身对成绩要求也比较高,当然未来的发展也是无可限量。

6.机械设计及其自动化

机械设计及其自动化的目的就是让机器、设备、仪器等按照预定程序进行生产活动,这与人工智能不谋而合。本身这个专业就是“万金油”专业,可以应用在各个领域,就业无压力。

这六个专业与人工智能有着密切联系,都是当下的热门专业,就业面广,薪酬待遇普遍不错,很值得报考。

人工智能专业学什么

主要课程:公共必修课、通识教育课、数学与自然科学基础课、数据结构与算法、计算机组成原理、计算机 操作系统 、程序设计基础、最优化算法、计算机视觉与模式识别、自然语言处理、计算机网络、数据库原理及应用、机器学习、分布式并行计算、数字逻辑、脑与认知科学。

需要数学基础:高等数学,线性代数,概率论数理统计和随机过程,离散数学,数值分析。

其次需要算法的积累:人工神经网络,支持向量机,遗传算法等等算法;当然还有各个领域需要的算法,比如你要让机器人自己在位置环境导航和建图就需要研究SLAM;总之算法很多需要时间的积累;

然后,需要掌握至少一门编程语言,毕竟算法的实现还是要编程的;如果深入到硬件的话,一些电类基础课必不可少。

人工智能专业就业方向 有哪些

1、搜索方向,例如百度识图、作业帮搜题等。视频搜索也是搜索领域进一步研究的方向;

2、计算机视觉和模式识别方向,其应用领域包括智能办公、智能交通、智慧城市等等;

3、医学图像处理,医疗设备和医疗器械很多都会涉及到图像处理和成像技术。

4、无人驾驶领域,是人工智能重点应用领域之一;

5、智慧生活和智慧城市等,包括交通、商业、生活的诸多领域将会出现人工智能的影子。

人工智能专业掌握的知识能力

1.掌握数学、物理、计算机等方面的基本理论和基本知识;

2.掌握计算机科学与技术等方面的基本理论、基本知识和基本技能与 方法 ;

3.了解相近专业的一般原理和知识;

4.掌握资料查询、文献检索及运用现代信息技术获取相关信息的基本方法;

5.具有一定的技术设计,归纳、整理、分析实验结果,撰写论文,参与学术交流的能力。

人工智能领域涉及的专业相关 文章 :

★ 自动化专业最好的20所大学

★ 关于人工智能领域的大学论文

★ 关于人工智能领域的论文

★ 人工智能在军事上的应用论文(2)

★ vr虚拟现实技术期末论文

★ 计算机论文文献综述

★ 人工智能在军事上的应用论文

★ 电气工程自动化专科论文

★ 计算机软件工程浅析相关的论文(2)

★ 有关计算机视觉的课程论文

var _hmt = _hmt || []; (function() { var hm = document.createElement("script"); hm.src = ""; var s = document.getElementsByTagName("script")[0]; s.parentNode.insertBefore(hm, s); })();

人工智能属于什么专业 就业前景如何

人工智能属于自然科学和社会科学的交叉性学科,目前人工智能的就业前景非常不错,人工智能发展也处于比较好的阶段。

人工智能属于什么专业

人工智能属于自然科学和社会科学的交叉性学科,它与计算机科学、信息学、数学、神经生理学、认知科学、心理学等众多学科有极强的关联性。目前,人工智能在计算机领域内得到了广泛的重视,并在机器人,经济政治决策,控制系统,仿真系统等方面得到应用。

因此,从这些个解读考虑,在本科阶段可以选择与计算机、数学相关的专业,如计算机科学与技术、软件工程、通信工程、应用数学、统计数学等专业,以及近年来高校新设立的智能科学与技术、数据科学与大数据技术等专业。此外,也还可以考虑自动化、机械类专业,有些高校在此类专业基础上延伸至人工智能方向。

人工智能专业就业前景

近几年,人工智能、移动终端、云计算、大数据等相关专业应届生备受企业关注,同学们都是被几家企业同时抢着要。数据显示,我国人工智能相关人才缺口超过500万,“坑多萝卜少”的现状让企业展开了校园人才争夺战。国家提出了人工智能三步走的发展战略,现在人工智能已经上升到战略层面。在今年的人大会议中,总理在政府工作报告中再提“人工智能”。我们都知道,被列入国家发展规划后,国家会颁发很多政策去促进这一计划的实现,所以越早进入人工智能领域就越有发展潜能。

这是一个属于人工智能的时代。当前,人工智能是一颗闪耀的“明星”,已经成为国际竞争的新焦点,世界多国都在加紧人工智能发展布局,以至于提到了战略高度的地位。人工智能专业毕业后可以留校当老师,公司研发岗位,人工智能实验室等。具体岗位有:数据挖掘工程师、下位机算法工程师、售前技术支持(商业智能方向)、行业研究员(股市)、科技公司的电气工程师、C/C++算法开发工程师等等。

学人工智能报什么专业 学什么比较好

想学人工智能专业可以报考人工智能专业,也可以报考相关的数据科学与大数据技术、智能感知工程、数字经济、区块链工程、虚拟现实技术、工业智能等专业。目前人工智能领域的人才非常紧缺,人工智能专家基本都集中于顶尖的大学,而人工智能技术好的教师当然也会选择重点大学去执教,所以如果大家实力够强,我还是建议去报考重点大学的人工智能专业。

人工智能专业介绍

人工智能作为中国普通高等学校本科专业,是一个以计算机科学为基础,由计算机、心理学、哲学等多学科交叉融合的交叉学科、新兴学科,研究开发用于模拟延伸和扩展人的智能的理论、方法、技术及应用系统的一门新的技术科学,努力了解智能的实质,并生产出新的能以人类智能相似的方式做出反应的智能机器,包括机器人、语言识别、图像识别、自然语言处理和专家系统等。

人工智能专业的主要课程

人工智能专业一般会开设数学基础课程(微积分、线性代数、数理统计等)和计算机基础(数据结构、程序设计基础等),在此基础上也会开设专业课加深人工智能专业理论和技术学习(深度学习、机器学习等)。

具体核心课程有:人工智能导论、高级语言程序设计、Python程序设计、离散数学、数据结构、机器学习、深度学习、信号与系统、计算机视觉、数字信号处理、数字图像处理、统计学、模式识别、随机过程、优化方法、人工智能系统综合设计、数据挖掘、自然语言处理、几何感知与智能、智能硬件与交互设计、虚拟现实与增强现实、区块链、认知心理学、生物启发智能。

学人工智能应该选什么专业?

人工智能技术关系到人工智能产品是否可以顺利应用到我们的生活场景中。在人工智能领域,它普遍包含了机器学习、知识图谱、自然语言处理、人机交互、计算机视觉、生物特征识别、AR/VR七个关键技术。

一、机器学习

机器学习(MachineLearning)是一门涉及统计学、系统辨识、逼近理论、神经网络、优化理论、计算机科学、脑科学等诸多领域的交叉学科,研究计算机怎样模拟或实现人类的学习行为,以获取新的知识或技能,重新组织已有的知识结构使之不断改善自身的性能,是人工智能技术的核心。基于数据的机器学习是现代智能技术中的重要方法之一,研究从观测数据(样本)出发寻找规律,利用这些规律对未来数据或无法观测的数据进行预测。根据学习模式、学习方法以及算法的不同,机器学习存在不同的分类方法。

根据学习模式将机器学习分类为监督学习、无监督学习和强化学习等。

根据学习方法可以将机器学习分为传统机器学习和深度学习。

二、知识图谱

知识图谱本质上是结构化的语义知识库,是一种由节点和边组成的图数据结构,以符号形式描述物理世界中的概念及其相互关系,其基本组成单位是“实体—关系—实体”三元组,以及实体及其相关“属性—值”对。不同实体之间通过关系相互联结,构成网状的知识结构。在知识图谱中,每个节点表示现实世界的“实体”,每条边为实体与实体之间的“关系”。通俗地讲,知识图谱就是把所有不同种类的信息连接在一起而得到的一个关系网络,提供了从“关系”的角度去分析问题的能力。

知识图谱可用于反欺诈、不一致性验证、组团欺诈等公共安全保障领域,需要用到异常分析、静态分析、动态分析等数据挖掘方法。特别地,知识图谱在搜索引擎、可视化展示和精准营销方面有很大的优势,已成为业界的热门工具。但是,知识图谱的发展还有很大的挑战,如数据的噪声问题,即数据本身有错误或者数据存在冗余。随着知识图谱应用的不断深入,还有一系列关键技术需要突破。

三、自然语言处理

自然语言处理是计算机科学领域与人工智能领域中的一个重要方向,研究能实现人与计算机之间用自然语言进行有效通信的各种理论和方法,涉及的领域较多,主要包括机器翻译、机器阅读理解和问答系统等。

机器翻译

机器翻译技术是指利用计算机技术实现从一种自然语言到另外一种自然语言的翻译过程。基于统计的机器翻译方法突破了之前基于规则和实例翻译方法的局限性,翻译性能取得巨大提升。基于深度神经网络的机器翻译在日常口语等一些场景的成功应用已经显现出了巨大的潜力。随着上下文的语境表征和知识逻辑推理能力的发展,自然语言知识图谱不断扩充,机器翻译将会在多轮对话翻译及篇章翻译等领域取得更大进展。

语义理解

语义理解技术是指利用计算机技术实现对文本篇章的理解,并且回答与篇章相关问题的过程。语义理解更注重于对上下文的理解以及对答案精准程度的把控。随着MCTest数据集的发布,语义理解受到更多关注,取得了快速发展,相关数据集和对应的神经网络模型层出不穷。语义理解技术将在智能客服、产品自动问答等相关领域发挥重要作用,进一步提高问答与对话系统的精度。

问答系统

问答系统分为开放领域的对话系统和特定领域的问答系统。问答系统技术是指让计算机像人类一样用自然语言与人交流的技术。人们可以向问答系统提交用自然语言表达的问题,系统会返回关联性较高的答案。尽管问答系统目前已经有了不少应用产品出现,但大多是在实际信息服务系统和智能手机助手等领域中的应用,在问答系统鲁棒性方面仍然存在着问题和挑战。

自然语言处理面临四大挑战:

一是在词法、句法、语义、语用和语音等不同层面存在不确定性;

二是新的词汇、术语、语义和语法导致未知语言现象的不可预测性;

三是数据资源的不充分使其难以覆盖复杂的语言现象;

四是语义知识的模糊性和错综复杂的关联性难以用简单的数学模型描述,语义计算需要参数庞大的非线性计算

四、人机交互

人机交互主要研究人和计算机之间的信息交换,主要包括人到计算机和计算机到人的两部分信息交换,是人工智能领域的重要的外围技术。人机交互是与认知心理学、人机工程学、多媒体技术、虚拟现实技术等密切相关的综合学科。传统的人与计算机之间的信息交换主要依靠交互设备进行,主要包括键盘、鼠标、操纵杆、数据服装、眼动跟踪器、位置跟踪器、数据手套、压力笔等输入设备,以及打印机、绘图仪、显示器、头盔式显示器、音箱等输出设备。人机交互技术除了传统的基本交互和图形交互外,还包括语音交互、情感交互、体感交互及脑机交互等技术。

五、计算机视觉

计算机视觉是使用计算机模仿人类视觉系统的科学,让计算机拥有类似人类提取、处理、理解和分析图像以及图像序列的能力。自动驾驶、机器人、智能医疗等领域均需要通过计算机视觉技术从视觉信号中提取并处理信息。近来随着深度学习的发展,预处理、特征提取与算法处理渐渐融合,形成端到端的人工智能算法技术。根据解决的问题,计算机视觉可分为计算成像学、图像理解、三维视觉、动态视觉和视频编解码五大类。

目前,计算机视觉技术发展迅速,已具备初步的产业规模。未来计算机视觉技术的发展主要面临以下挑战:

一是如何在不同的应用领域和其他技术更好的结合,计算机视觉在解决某些问题时可以广泛利用大数据,已经逐渐成熟并且可以超过人类,而在某些问题上却无法达到很高的精度;

二是如何降低计算机视觉算法的开发时间和人力成本,目前计算机视觉算法需要大量的数据与人工标注,需要较长的研发周期以达到应用领域所要求的精度与耗时;

三是如何加快新型算法的设计开发,随着新的成像硬件与人工智能芯片的出现,针对不同芯片与数据采集设备的计算机视觉算法的设计与开发也是挑战之一。

六、生物特征识别

生物特征识别技术是指通过个体生理特征或行为特征对个体身份进行识别认证的技术。从应用流程看,生物特征识别通常分为注册和识别两个阶段。注册阶段通过传感器对人体的生物表征信息进行采集,如利用图像传感器对指纹和人脸等光学信息、麦克风对说话声等声学信息进行采集,利用数据预处理以及特征提取技术对采集的数据进行处理,得到相应的特征进行存储。

识别过程采用与注册过程一致的信息采集方式对待识别人进行信息采集、数据预处理和特征提取,然后将提取的特征与存储的特征进行比对分析,完成识别。从应用任务看,生物特征识别一般分为辨认与确认两种任务,辨认是指从存储库中确定待识别人身份的过程,是一对多的问题;确认是指将待识别人信息与存储库中特定单人信息进行比对,确定身份的过程,是一对一的问题。

生物特征识别技术涉及的内容十分广泛,包括指纹、掌纹、人脸、虹膜、指静脉、声纹、步态等多种生物特征,其识别过程涉及到图像处理、计算机视觉、语音识别、机器学习等多项技术。目前生物特征识别作为重要的智能化身份认证技术,在金融、公共安全、教育、交通等领域得到广泛的应用。

七、VR/AR

虚拟现实(VR)/增强现实(AR)是以计算机为核心的新型视听技术。结合相关科学技术,在一定范围内生成与真实环境在视觉、听觉、触感等方面高度近似的数字化环境。用户借助必要的装备与数字化环境中的对象进行交互,相互影响,获得近似真实环境的感受和体验,通过显示设备、跟踪定位设备、触力觉交互设备、数据获取设备、专用芯片等实现。

虚拟现实/增强现实从技术特征角度,按照不同处理阶段,可以分为获取与建模技术、分析与利用技术、交换与分发技术、展示与交互技术以及技术标准与评价体系五个方面。获取与建模技术研究如何把物理世界或者人类的创意进行数字化和模型化,难点是三维物理世界的数字化和模型化技术;分析与利用技术重点研究对数字内容进行分析、理解、搜索和知识化方法,其难点是在于内容的语义表示和分析;交换与分发技术主要强调各种网络环境下大规模的数字化内容流通、转换、集成和面向不同终端用户的个性化服务等,其核心是开放的内容交换和版权管理技术;展示与交换技术重点研究符合人类习惯数字内容的各种显示技术及交互方法,以期提高人对复杂信息的认知能力,其难点在于建立自然和谐的人机交互环境;标准与评价体系重点研究虚拟现实/增强现实基础资源、内容编目、信源编码等的规范标准以及相应的评估技术。

目前虚拟现实/增强现实面临的挑战主要体现在智能获取、普适设备、自由交互和感知融合四个方面。在硬件平台与装置、核心芯片与器件、软件平台与工具、相关标准与规范等方面存在一系列科学技术问题。总体来说虚拟现实/增强现实呈现虚拟现实系统智能化、虚实环境对象无缝融合、自然交互全方位与舒适化的发展趋势

结语:以上就是首席CTO笔记为大家整理的关于人工智能时代选什么专业的相关内容解答汇总了,希望对您有所帮助!如果解决了您的问题欢迎分享给更多关注此问题的朋友喔~


本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。
如若转载,请注明出处:/AI/29598.html