首页>>人工智能->人工智能要读哪些书

人工智能要读哪些书

时间:2023-12-01 本站 点击:0

导读:很多朋友问到关于人工智能要读哪些书的相关问题,本文首席CTO笔记就来为大家做个详细解答,供大家参考,希望对大家有所帮助!一起来看看吧!

本文目录一览:

1、十本计算机人工智能的好书2、有哪些有关人工智能的好书值得推荐3、有哪些关于人工智能的书籍可供推荐?4、人工智能入门书籍5、自学人工智能需要哪些书?

十本计算机人工智能的好书

人工智能从诞生以来,理论和技术日益成熟,应用领域也不断扩大,可以设想,未来人工智能带来的科技产品,将会是人类智慧的“容器”。当今人工智能主要是利用电子技术成果和仿生学方法,从大脑的结构方面模拟人脑的活动,即结构模拟。下面我带大家一起看看2017年计算机人工智能的热门好书有哪些:

   1、《Arduino机器人制作指南》 Gordon McComb 科学出版社

《Arduino机器人制作指南》是一本机器人科技入门的“大百科全书”,不仅系统地讲解基于Arduino的机器人编程技术,还详细介绍机器人科技必涉的传感器技术、运动控制技术、人工智能技术等。

2、《PVCBOT超简单机器人设计与制作》 梁玮 人民邮电出版社

PVCBOT是难得的团队,几年来非常专心执着的开发基础在PVC的机器人教材,给很多爱好者和小朋友带来欢乐和新知识。这本新书持续的这个精神,带来更进阶的愉快和知识!——国内第一个创客空间——新车间创始人 李大维

   3、《机器人技术入门》 魏巍 化学工业出版社

《机器人技术入门》一书图文并茂,是一本实用性比较强的入门级图书。主要具有以下特点:简化基础理论知识,注重图书的实用性和先进性。介绍了机器人技术的基本原理,以及机器人发展历史、应用分类、技术特点、模型及控制等内容。

4、《群体智能与多Agent系统交叉结合》 唐贤伦 科学出版社

《群体智能与多Agent系统交叉结合——理论、方法与应用》可以为信息科学、自动化技术等领域从事智能优化、计算智能、多Agent系统、多机器人协作研究的.相关专业技术人员提供参考,也可以作为相关专业的本科生、硕士生、博士生、教师教材。

5、《ROS机器人程序设计》 马丁内斯 机械工业出版社

国内首本引进ROS机器人程序设计的译著,让你全面了解 ROS系统的各种工具。提供了各种实际的示例代码供读者学习和理解ROS的软件框架。本书可以帮助读者从对ROS一无所知到能够通过ROS系统完成小型机器人系统的开发和编程工作。

   6、《机器人学及其智能控制》 郭彤颖,安冬 人民邮电出版社

《机器人学及其智能控制》系统地介绍了机器人的基本组成、工作原理和应用实例,内容涉及机器人技术的发展简史、工业机器人的运动学和动力学、机器人控制技术、用于机器人的各种传感器、机器人轨迹规划、移动机器人的定位与导航,以及机器人在工业领域和服务领域的应用。

7、《Fluent14.5流场分析从入门到精通》 胡仁喜 机械工业出版社

《Fluent14.5流场分析从入门到精通》全面介绍了FLUENT 14.5流场分析的各种功能和基本操作方法。全书共分为12章,分别介绍了流体力学基础、GAMBIT基础知识、FLUENT基础知识、Tecplot软件、二维流动和传热的数值模拟、三维流动和传热的数值模拟、湍流模型模拟、多相流模型模拟、滑移网格模型模拟、动网格模型模拟、组分传输与气体燃烧的模拟和UDF使用等知识。

   8、《机器视觉》 伯特霍尔德·霍恩 中国青年出版社

《机器视觉》:这本书是计算机视觉的“圣经”!如果任何人想要学习计算机视觉的基本内容,一定要以这本书作为起始点。千万不要错过!尤其是,这本经典著作对于书中概念的杰出的介绍方法。我强烈地将这本不可或缺的书推荐给所有学习计算机视觉的人。

9、《机器人创新设计》 景维华,曹双 清华大学出版社

景维华、曹双编著的《机器人创新设计——基于慧鱼创意组合模型的机器人制作》以慧鱼模型为基础,希望帮助青少年爱好者踏入机器人创新制作的大门,培养青少年对科学与工程学科的兴趣,发掘青少年的创新潜能。

   10、《机器学习系统设计》 里彻特 人民邮电出版社

《机器学习系统设计》是实用的Python机器学习教程,结合大量案例,介绍了机器学习的各方面知识。《机器学习系统设计》不仅告诉你“怎么做”,还会分析“为什么”,力求帮助读者掌握多种多样的机器学习Python库,学习构建基于Python的机器学习系统,并亲身实践和体验机器学习系统的功能。

有哪些有关人工智能的好书值得推荐

机器学习

Programming Collective Intelligence

本书以机器学习与计算统计为主题背景,专门讲述如何挖掘和分析Web上的数据和资源,如何分析用户体验、市场营销、个人品味等诸多信息,并得出有用的结论,通过复杂的算法来从Web网站获取、收集并分析用户的数据和反馈信息,以便创造新的用户价值和商业价值。

全书内容翔实,包括协作过滤技术(实现关联产品推荐功能)、集群数据分析(在大规模数据集中发掘相似的数据子集)、搜索引擎核心技术(爬虫、索引、查询引擎、PageRank算法等)、搜索海量信息并进行分析统计得出结论的优化算法、贝叶斯过滤技术(垃圾邮件过滤、文本过滤)、用决策树技术实现预测和决策建模功能、社交网络的信息匹配技术、机器学习和人工智能应用等。本书是Web开发者、架构师、应用工程师等的绝佳选择。

Machine Learning for Hackers

Machine Learning for Hackers (中文译名:机器学习-实用案例解析)通过实例讲解机器学习算法,用R实现的,可以一边学习机器学习一边学习R。这是一本实操型的书,重点放在讲怎么用R做数据挖掘,机器学习的算法更多的是通过黑箱的方式来讲,强调input,output含义,弱化机器学习算法细节。文中基本都是通过case来讲述怎么去解决问题,并且提供了原始数据供自己分析。适合两种人:

(1)有过机器学习的一些理论,缺少案例练习

(2)只需掌握怎么用通用的机器学习解决问题的人,只希望知道机器学习算法的大致思想,不想详细学习机器学习中的算法。

Machine Learning by Tom M Mitchell

《Machine Learning》展示了机器学习中核心的算法和理论,并阐明了算法的运行过程。《Machine Learning》综合了许多的研究成果,例如统计学、人工智能、哲学、信息论、生物学、认知科学、计算复杂性和控制论等,并以此来理解问题的背景、算法和其中的隐含假定。《机器学习》可作为计算机专业 本科生、研究生教材,也可作为相关领域研究人员、教师的参考书。

The Elements of Statistical Learning

《The Elements of Statistical Learning》介绍了这些领域的一些重要概念。尽管应用的是统计学方法,但强调的是概念,而不是数学。许多例子附以彩图。《The Elements of Statistical Learning》内容广泛,从有指导的学习(预测)到无指导的学习,应有尽有。包括神经网络、支持向量机、分类树和提升等主题,是同类书籍中介绍得最全面的。

计算和信息技术的飞速发展带来了医学、生物学、财经和营销等诸多领域的海量数据。理解这些数据是一种挑战,这导致了统计学领域新工具的发展,并延伸到诸如数据挖掘、机器学习和生物信息学等新领域。许多工具都具有共同的基础,但常常用不同的术语来表达。

Learning from Data

这是一门机器学习(ML)的入门课程,涵盖其基本理论、算法及应用。机器学习是大数据及金融、医药、商业及科研应用的关键技术。机器学习使得计算系统能够自动学习如何通过数据中提取的信息执行目标任务。机器学习现已成为当下最热门的研究领域之一,也是加州理工学院15个不同专业的本科生和研究生的研修课程。本课程在理论和实践中保持平衡,并涵盖了数学与启发式方法。

Pattern Recognition and Machine Learning

这本书是机器学习的神作之一,必读经典!

人工智能

Artificial Intelligence: A Modern Approach

《Artificial Intelligence: A Modern Approach》以详尽和丰富的资料,从理性智能体的角度,全面阐述了人工智能领域的核心内容,并深入介绍了各个主要的研究方向,是一本难得的综合性教材。

Artificial Intelligence for Humans

这本书阐释了基本的人工智能算法,如维度、距离度量、聚类、误差计算和线性回归等,用了丰富的案例进行阐释。需要较好的数学基础。

Paradigm of Artificial Intelligence Programming

本书介绍了出色的编程范式和基本的AI理论,是致力于人工智能领域的小伙伴的必读之作。

Artificial Intelligence: A New Synthesis

本书提出了统一人工智能理论的新的集成方法,涵盖了诸如神经网络,计算机视觉,启发式搜索,贝叶斯网络等。进阶选手必读。

The Emotion Machine: Commonsense Thinking, Artificial Intelligence and the Future of Human Mind

在这部让人脑洞大开的图书中,科技先锋马文·明斯基继续了他极具创造力的研究,给我们呈现了一个全新的不可思议的人类大脑运转模式。

Artificial Intelligence (3rd Edition)

这是一本关于人工智能的入门书。没有编程基础的人也可以很容易地理解其中的解释和概念。化繁为简,但也包含了高层次的人工智能领域的探讨。

有哪些关于人工智能的书籍可供推荐?

看到这个问题有点小兴奋,我来推荐一份人工智能书单。

1、机器学习精讲

机器学习原理算法与应用教程,精简机器学习入门手册,美亚机器学习深度学习畅销书,全彩印刷,扫描书中二维码可阅读补充内容,人工智能和机器学习领域众多知名专家推荐。

2、动手学深度学习

目前市面上有关深度学习介绍的书籍大多可分两类,一类侧重方法介绍,另一类侧重实践和深度学习工具的介绍。本书同时覆盖方法和实践。本书不仅从数学的角度阐述深度学习的技术与应用,还包含可运行的代码,为读者展示如何在实际中解决问题。

为了给读者提供一种交互式的学习体验,本书不但提供免费的教学视频和讨论区,而且提供可运行的Jupyter记事本文件,充分利用Jupyter记事本能将文字、代码、公式和图像统一起来的优势。这样不仅直接将数学公式对应成实际代码,而且可以修改代码、观察结果并及时获取经验,从而带给读者全新的、交互式的深度学习的学习体验。

3、深度学习

本书囊括了数学及相关概念的背景知识,包括线性代数、概率论、信息论、数值优化以及机器学习中的相关内容。同时,它还介绍了工业界中实践者用到的深度学习技术,包括深度前馈网络、正则化、优化算法、卷积网络、序列建模和实践方法等。

并且调研了诸如自然语言处理、语音识别、计算机视觉、在线推荐系统、生物信息学以及视频游戏方面的应用。最后,本书还提供了一些研究方向,涵盖的理论主题包括线性因子模型、自编码器、表示学习、结构化概率模型、蒙特卡罗方法、配分函数、近似推断以及深度生成模型。

4、人工智能(第2版)

本书是作者结合多年教学经验、精心撰写的一本人工智能教科书,堪称“人工智能的百科全书”。全书涵盖了人工智能简史、搜索方法、知情搜索、博弈中的搜索、人工智能中的逻辑、知识表示、产生式系统、专家系统、机器学习和神经网络、遗传算法、自然语言处理、自动规划、机器人技术、高级计算机博弈、人工智能的历史和未来等主题。

5、Python 神经网络编程

本书将带领您进行一场妙趣横生却又有条不紊的旅行——从一个非常简单的想法开始,逐步理解神经网络的工作机制。您无需任何超出中学范围的数学知识,并且本书还给出易于理解的微积分简介。本书的目标是让尽可能多的普通读者理解神经网络。读者将学习使用Python开发自己的神经网络,训练它识别手写数字,甚至可以与专业的神经网络相媲美。

人工智能入门书籍

人工智能是计算机科学的一个分支,并不是一个单一学科,图像识别、自然语言处理、机器人、语言识别、专家系统等等,每一个研究都富有挑战。对人工智能感兴趣,但无法确定具体方向,如何了解人工智能现状和研究领域?

笔者推荐4本科普书,对于大多数人来说,阅读难度不高,公式和理论少,内容有趣,能读得下去;信息较新鲜且全,要有一定阅读价值,能够有深入的思考当然更好。书单不长,只用做科普入门。

1、《超级智能》

2、《我们最后的发明:人工智能与人类时代的终结》

3、《智能时代》

4、《人工智能:国家人工智能战略行动抓手》

自学人工智能需要哪些书?

1、人工智能算法方面:

《人工智能及其应用》第三版、人工智能与知识工程。这两本感觉买一本就可以了~第一本感觉能简单并且全面点。这类书其实很多可是。大多内容都是重复的所以买一到两本即可。

2、机器视觉算法方面:

《机器视觉算法与应用》这本书讲的大多都是工业化生产中机器视觉应用。从内容来说并不是很简单,建议不要当入门教材来学习。

3、机器人方面:

新版《机器人技术手册》日译的书,可能这是我当初在当当网里找到唯一一本比较全面实用的机器人方面的书。这本书由基础到应用以及一些机器人实际问题上讲述得很全面。强烈建议买一本。

结语:以上就是首席CTO笔记为大家整理的关于人工智能要读哪些书的全部内容了,感谢您花时间阅读本站内容,希望对您有所帮助,更多关于人工智能要读哪些书的相关内容别忘了在本站进行查找喔。


本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。
如若转载,请注明出处:/AI/6843.html