首页>>人工智能->什么是人工智能起源的基础

什么是人工智能起源的基础

时间:2023-12-01 本站 点击:0

导读:今天首席CTO笔记来给各位分享关于什么是人工智能起源的基础的相关内容,如果能碰巧解决你现在面临的问题,别忘了关注本站,现在开始吧!

本文目录一览:

1、什么是人工智能?2、人工智能的概念3、人工智能需要什么基础4、AKU人工智能的起源?5、人工智能需要什么基础?

什么是人工智能?

人工智能(Artificial Intelligence,AI)是指计算机像人一样拥有智能能力,是一个融合计算机科学、统计学、脑神经学和社会科学的前沿综合学科,可以代替人类实现识别、认知,分析和决策等多种功能。如当你说一句话时,机器能够识别成文字,并理解你话的意思,进行分析和对话等。

人工智能的起源:人工智能在五六十年代时正式提出,1950年,一位名叫马文·明斯基(后被人称为“人工智能之父”)的大四学生与他的同学邓恩·埃德蒙一起,建造了世界上第一台神经网络计算机。这也被看做是人工智能的一个起点。巧合的是,同样是在1950年,被称为“计算机之父”的阿兰·图灵提出了一个举世瞩目的想法——图灵测试。按照图灵的设想:如果一台机器能够与人类开展对话而不能被辨别出机器身份,那么这台机器就具有智能。而就在这一年,图灵还大胆预言了真正具备智能机器的可行性。

1956年,在由达特茅斯学院举办的一次会议上,计算机专家约翰·麦卡锡提出了“人工智能”一词。后来,这被人们看做是人工智能正式诞生的标志。就在这次会议后不久,麦卡锡从达特茅斯搬到了MIT。同年,明斯基也搬到了这里,之后两人共同创建了世界上第一座人工智能实验室——MIT AI LAB实验室。值得追的是,茅斯会议正式确立了AI这一术语,并且开始从学术角度对AI展开了严肃而精专的研究。在那之后不久,最早的一批人工智能学者和技术开始涌现。达特茅斯会议被广泛认为是人工智能诞生的标志,从此人工智能走上了快速发展的道路。

人工智能的第一次高峰 在1956年的这次会议之后,人工智能迎来了属于它的第一段Happy Time。在这段长达十余年的时间里,计算机被广泛应用于数学和自然语言领域,用来解决代数、几何和英语问题。这让很多研究学者看到了机器向人工智能发展的信心。甚至在当时,有很多学者认为:“二十年内,机器将能完成人能做到的一切。”

因此,人工智能项目停滞不前,但却让一些人有机可乘,1973年Lighthill针对英国AI研究状况的报告。批评了AI在实现“宏伟目标”上的失败。由此,人工智能遭遇了长达6年的科研深渊。

人工智能的概念

人工智能是一种使计算机,计算机控制的机器人或软件智能地思考的方式,其方式与智能人类的思维方式类似。

人工智能是通过研究人类大脑如何思考以及人类在尝试解决问题时如何学习,决定和工作,然后将本研究的结果用作开发智能软件和系统的基础来实现的。

在充分利用计算机系统的力量的同时,人类的好奇心使他想知道“机器能像人类一样思考和行为吗?”

因此,人工智能的发展始于在我们发现并在人类中高度重视的机器中创造类似的智能。

人工智能的起源发展

“人工智能”一词最初在1956年美国的达特茅斯(Dartmouth)大学举办的一场长达两个月的研讨会中被提出,从那以后,人工智能作为新鲜事物开始进入人们的视野中,研究人员不断探索发展了众多相关的理论和技术,人工智能的概念也随之扩展。

在首次提出人工智能的概念之后,一些重要的理论结果也层出不穷。但是由于消化方法的推理能力有限,机器翻译技术也不够成熟,在两者的共同作用下导致了最终的失败。人工智能技术逐渐进入了它的瓶颈期。

1976年,斯坦福大学的研究人员耗时五六年开发了一种使用了人工智能的早期模拟决策系统,用来进行严重感染时的感染菌诊断,以及抗生素给药的推荐系统——MYCIN系统。从那时起,还开发了许多著名的专家系统,如PROSPECTIOR探矿系统、Hearsay-II语音理解系统等。

后续的研究和开发专家系统使人工智能得以实际应用。值得一提的是,为了更好地发展人工智能,在各国科学家们的号召下于1969年召开了国际人工智能联合会议,这也标志着人工智能新高潮的出现。

人工智能需要什么基础

数学是人工智能必备的基础知识。线性代数将研究对象形式化,概率论描述统计规律。而且在各种算法以及程序语言都需要基于数学的计算方法。对于数学基础,需要掌握到高等数学、线性代数、概率论数理统计和随机过程、离散数学、数值分析等等。一般情况下本科理科专业的数学知识已经基本符合人工智能的相关要求。

人工智能需要大量的知识储备,基础如下:

基础课程:先学完基础课程在切入人工智能领域。

比如数学方面的:机器学习、深度学习、神经元算法、傅里叶变换、小波算法、时间序列、初级的高等代数和概率论等;计算机语言方面:标准的c语言;硬件:了解编译原理、操作系统,因为现在深度学习大量应用到了并行处理,对硬件不熟悉,就不能在有限的资源下实现更好的算法。

人工智能技术中算法是核心。人工神经网络,支持向量机,遗传算法等等算法;当然还有各个领域需要的算法,比如要让机器人自己在位置环境导航和建图就需要研究SLAM;总之算法很多需要时间的积累。

人工智能技术实现主要使用Python编程语言。通过编程语言将各种算法应用到计算机程序中,从而实现较终机器可执行的人工智能的程序。当然如果涉及到硬件开发的话,较好还要掌握一些C语言之类的编程语言。

前景很好,中国正在产业升级,工业机器人和人工智能方面都会是强烈的热点,而且正好是在3~5年以后的时间。难度,肯定高,要求你有创新的思维能力,高数中的微积分、数列等等必须得非常好,软件编程(基础的应用较广泛的语言:C/C++)必须得很好。

微电子(数字电路、低频高频模拟电路、较主要的是嵌入式的编程能力)得学得很好,还要有一定的机械设计能力(空间思维能力很重要)。这样的话,你就是人才,你就是中国未来5年以后急需的人工智能领域的人才。一门深入地钻研下去,你就是这个领域的甚至大师。

AKU人工智能的起源?

人工智能(Artificial Intelligence), 英文缩写为 AI, 是一门由计算机科学、控制论、信息论、语言学、神经生理学、心理学、数学、哲学等多种学科相互渗透而发展起来的综合性新学科。自问世以来AI经过波波折折,但终于作为一门边缘新学科得到世界的承认并且日益引起人们的兴趣和关注。不仅许多其他学科开始引入或借用AI技术,而且AI中的专家系统、自然语言处理和图象识别已成为新兴的知识产业的三大突破口。

人工智能的思想萌芽可以追溯到十七世纪的巴斯卡和莱布尼茨,他们较早萌生了有智能的机器的想法。十九世纪,英国数学家布尔和德o摩尔根提出了“思维定律“,这些可谓是人工智能的开端。十九世纪二十年代,英国科学家巴贝奇设计了第一架“计算机器“,它被认为是计算机硬件,也是人工智能硬件的前身。电子计算机的问世,使人工智能的研究真正成为可能。

作为一门学科,人工智能于1956年问世,是由“人工智能之父“McCarthy及一批数学家、信息学家、心理学家、神经生理学家、计算机科学家在Dartmouth大学召开的会议上,首次提出。对人工智能的研究,由于研究角度的不同,形成了不同的研究学派。这就是:符号主义学派、连接主义学派和行为主义学派。

传统人工智能是符号主义,它以Newell和Simon提出的物理符号系统假设为基础。物理符号系统是由一组符号实体组成,它们都是物理模式,可在符号结构的实体中作为组成成分出现,可通过各种操作生成其它符号结构。物理符号系统假设认为:物理符号系统是智能行为的充分和必要条件。主要工作是“通用问题求解程序“(General Problem Solver, GPS):通过抽象,将一个现实系统变成一个符号系统,基于此符号系统,使用动态搜索方法求解问题。

人工智能需要什么基础?

需要扎实的数学基础。

为什么学习人工智能这么看重数学基础呢?

这个首先得从目前人工智能的本质说起,目前以神经网络为基础的深度学习体系,其实可以看做是一个线性代数矩阵模型,从微观上来说是微分方程。

人工智能的重点在于智能,而智能的最终体现应该是随机性,比如你永远不知道一个独立的智慧生命在下一秒会做什么事情。

数学是有解可计算的,智能是无解无法预测的,但智能的很多行为又是可以数学进行计算的,所以智能与数学之间应该是具有强关系但并非唯一相关。

这也是为什么国内外大多数研究所招实习生首先看重的就是数学能力。

学人工智能要求怎样的数学基础

“线性代数”、“概率论”、“优化论”这三门数学课程,前两门是建模,后一门是求解,是学习人工智能的基础。(你们要的我都有)

1.线性代数

线性代数是学习人工智能过程中必须掌握的知识。线性代数中我们最熟悉的就是联立方程式了,而线性代数的起源就是为了求解联立方程式。只是随着研究的深入,人们发现它还有更广阔的用途。

2.概率论

“概率统计”是统计学习中重要的基础课程,因为机器学习很多时候就是在处理事务的不确定性。

3.优化

模型建立起来后,如何求解这个模型属于优化的范畴。优化,就是在无法获得问题的解析解的时候,退而求其次找到一个最优解。当然,需要提前定义好什么是最优,就好像篮球比赛之前得先定义好比赛规则一样。

通常的做法是想办法构造一个损失函数,然后找到损失函数的最小值进行求解。

结语:以上就是首席CTO笔记为大家介绍的关于什么是人工智能起源的基础的全部内容了,希望对大家有所帮助,如果你还想了解更多这方面的信息,记得收藏关注本站。


本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。
如若转载,请注明出处:/AI/6918.html