导读:今天首席CTO笔记来给各位分享关于大数据最少要多少数据的相关内容,如果能碰巧解决你现在面临的问题,别忘了关注本站,现在开始吧!
目前大数据至少要达到几个字节?
大数据并不是指一个数据的位数很大,而是指数据体量巨大,数据速度快,数据类型繁多和数据价值密度低。是指无法在有限时间内用常规软件工具对其进行获取,存储,管理和处理的数据集合。
所谓大数据一般是指多大的数据量
其实首先你要区分大数据和大数据量的概念。大数据量只是一个纯粹的数据量级的问题,而现在大家所谈论的大数据主要包括搜索、新闻、博客、微博等社交网、移动电话和短信、热线电话和监控数据、通测数据等等。这些数据大多数为我们日常社交生活或是语音通信时产生。通常为TB级别,非结构化数据。而TB级别的数据用excel或者其他数据分析工具是很难展现处理的,这时就需要BI工具来应对大数据。FineBI针对大数据有专门的大数据量解决方案,可以去它的官网看看,就不附链接了
多大的数据才算“大数据”
什么是大数据?
列举三个常用的大数据定义:
(1)具有较强决策、洞察和流程优化能力的海量、高增长、多样化的信息资产需要新的处理模式。
——Gartner
(2)海量数据量、快速数据流和动态数据速度、多样的数据类型和巨大的数据价值。
—— IDC
(3)或者是海量数据、海量数据、大数据,是指所涉及的数据太大,无法在合理的时间内被截取、管理、处理、整理成人类可以解读的信息。
—— Wiki
大数据的其他定义也差不多,可以用几个关键词来定义大数据。
首先是“大尺度”,可以从两个维度来衡量,一是从时间序列中积累大量数据,二是对数据进行深度提炼。
其次,“多样化”可以是不同的数据格式,比如文字、图片、视频等。,可以是不同的数据类别,如人口数据、经济数据等。,也可以有不同的数据源,如互联网和传感器等。
第三,“动态”。数据是不断变化的,它可以随着时间迅速增加大量的数据,也可以是在空间不断移动变化的数据。
这三个关键词定义了大数据的形象。
但是,需要一个关键能力,就是“处理速度快”。如果有这样的大规模、多样化、动态的数据,但是需要很长时间的处理和分析,那就不叫大数据。从另一个角度来说,要实现这些数据的快速处理,肯定没有办法手工实现,所以需要借助机器来实现。
多大的数据,才能称为大数据呢?
多大容量的数据才算大数据,其实并没有定论,所谓的大数据的规模压根没有具体的标准,而仅仅规模大也不能算做是大数据。但另一方面,我们需要注意的是,目前的数据确实在不断的变大,据国际公司IBM研究,截止到2020年,全世界的数据规模将达到今天数据量的几十倍,而今天的数据也早已只能用ZB这样庞大的计算单位来进行统计了。
那么,既然大数据并不是用大容量来衡量的,那究竟什么是大数据呢?
这就不得不引用之前提到的IBM公司了,他们自己对于大数据有一套著名的5V理论:Volume(大量)、Velocity(高速)、Variety(多样性)、Value(价值)以及Veracity(真实性)。
1.Volume(大量)
刚才也说道,大数据并不是用大容量来衡量的,但大数据一定代表着这个数据具有一定的量级了,以至于在一台机器上并不能处理,必须借助分布式运算的方式来进行操作。
2. Velocity(高速)
ZB级别的数据带来的并不仅仅是数据储存方面的问题,更代表着数据处理的速度必须到达一定的界值,不然我们很难有秒级的千人千面的广告推送。
3. Variety(多样性)
当下如此爆发性增长的数据其实更多的是非结构化数据,而这种数据是与我们传统印象中Excel储存的二维表是不同的。非结构化数据更多的是以声音、图像、地理位置、视频等形式存在。而这样的数据,则代表着更高的数据处理要求。
4. Value(价值)
大数据就是高价值的代名词么?并不是,反而大数据代表着价值密度更低的数据。用一个成语来形容如今的数据分析或者数据挖掘,那就是大浪淘金。而究竟如何在一个大数据中提取有价值的信息呢,不得不说,这是一个机遇也是一个挑战。
5. Veracity(真实性)
大数据就一定真实么?并没有。为什么这么说呢,想象一下当下泛滥的作弊流量吧,你还敢确保你的用户数据并没有虚假的吗?所以,大数据也是可以造假的,我们一定要有一双智慧的眼睛却辨别大数据的好坏。
结语:以上就是首席CTO笔记为大家介绍的关于大数据最少要多少数据的全部内容了,希望对大家有所帮助,如果你还想了解更多这方面的信息,记得收藏关注本站。