导读:今天首席CTO笔记来给各位分享关于有多少生产用大数据原生的的相关内容,如果能碰巧解决你现在面临的问题,别忘了关注本站,现在开始吧!
工业大数据大有可为,浅谈制造业7大应用场景
工业大数据应用将带来工业企业创新和变革的新时代。通过互联网、移动物联网等带来的低成本感知、高速移动连接、分布式计算和高级分析,信息技术和全球工业系统正在深入融合,给全球工业带来深刻的变革,创新企业的研发、生产、运营、营销和管理方式。这些创新不同行业的工业企业带来了更快的速度、更高的效率和更高的洞察力。工业大数据的典型应用包括产品创新、产品故障诊断与预测、工业生产线物联网分析、工业企业供应链优化和产品精准营销等诸多方面。本文我们讲就工业大数据在制造企业的应用场景进行逐一梳理。
一、加速产品创新
客户与工业企业之间的交互和交易行为将产生大量数据,挖掘和分析这些客户动态数据,能够帮助客户参与到产品的需求分析和产品设计等创新活动中,为产品创新作出贡献。福特公司是这方面的表率,他们将大数据技术应用到了福特福克斯电动车的产品创新和优化中,这款车成为了一款名副其实的“大数据电动车”。第一代福特福克斯电动车在驾驶和停车时产生大量数据。在行驶中,司机持续地更新车辆的加速度、刹车、电池充电和位置信息。这对于司机很有用,但数据也传回福特工程师那里,以了解客户的驾驶习惯,包括如何、何时以及何处充电。即使车辆处于静止状态,它也会持续将车辆胎压和电池系统的数据传送给最近的智能电话。
这种以客户为中心的大数据应用场景具有多方面的好处,因为大数据实现了宝贵的新型产品创新和协作方式。司机获得有用的最新信息,而位于底特律的工程师汇总关于驾驶行为的信息,以了解客户,制订产品改进计划,并实施新产品创新。而且,电力公司和其他第三方供应商也可以分析数百万英里的驾驶数据,以决定在何处建立新的充电站,以及如何防止脆弱的电网超负荷运转。
二、设备故障分析及预测
在制造业生产线上,工业生产设备都会受到持续的振动和冲击,这导致设备材料和零件的磨损老化,从而导致工业设备容易产生故障,而当人们意识到故障时,可能已经产生了很多不良品,甚至整个工业设备已经奔溃停机,从而造成巨大的损失。
如果能在故障发生之前进行故障预测,提前维修更换即将出现问题的零部件,这样就可以提高工业设备的寿命以及避免某个设备突然出现故障对整个工业生产带来严重的影响。随着工业4.0的到来,智能工厂的工业设备都配上了各种感应器,采集其振动、温度、电流、电压等数据显得轻而易举,通过分析这些实时的传感数据,对工业设备进行故障预测将是一种行之有效的措施。
因此设备故障预测方案成为了制造行业所青睐的解决方案,其具备的核心功能有:
1、故障超前预警,减少设备停机时间;
2、分析结果实时推送,减少人工成本;
3、适用于企业各种类型的设备,通用性强。
三、工业物联网生产线的大数据应用
现代化工业制造生产线安装有数以千计的小型传感器,来探测温度、压力、热能、振动和噪声。因为每隔几秒就收集一次数据,利用这些数据可以实现很多形式的分析,包括设备诊断、用电量分析、能耗分析、质量事故分析(包括违反生产规定、零部件故障)等。
首先,在生产工艺改进方面,在生产过程中使用这些大数据,就能分析整个生产流程,了解每个环节是如何执行的。一旦有某个流程偏离了标准工艺,就会产生一个报警信号,能更快速地发现错误或者瓶颈所在,也就能更容易解决问题。利用大数据技术,还可以对工业产品的生产过程建立虚拟模型,仿真并优化生产流程,当所有流程和绩效数据都能在系统中重建时,这种透明度将有助于制造商改进其生产流程。再如,在能耗分析方面,在设备生产过程中利用传感器集中监控所有的生产流程,能够发现能耗的异常或峰值情形,由此便可在生产过程中优化能源的消耗,对所有流程进行分析将会大大降低能耗。
四、产品销售预测与需求管理
近年来,保险业加速了数字化进程,大数据与保险营销深度融合,成为现代化保险营销的重要武器。慧都大数据助力保险行业精准营销,并成功帮助中意人寿保险有限公司更好地服务客户和发挥忠诚客户,提高销售效率及客户复购率。
五、工业供应链的分析与优化
当前,大数据分析已经是很多电子商务企业提升供应链竞争力的重要手段。例如,电子商务企业京东商城,通过大数据提前分析和预测各地商品需求量,从而提高配送和仓储的效能,保证了次日货到的客户体验。RFID等产品电子标识技术、物联网技术以及移动互联网技术能帮助工业企业获得完整的产品供应链的大数据,利用这些数据进行分析,将带来仓储、配送、销售效率的大幅提升和成本的大幅下降。
六、生产计划与排程
制造业面对多品种小批量的生产模式,数据的精细化自动及时方便的采集(MES/DCS)及多变性导致数据剧烈增大,再加上十几年的信息化的 历史 数据,对于需要快速响应的APS来说,是一个巨大的挑战。大数据可以给予我们更详细的数据信息,发现 历史 预测与实际的偏差概率,考虑产能约束、人员技能约束、物料可用约束、工装模具约束,通过智能的优化算法,制定预计划排产,并监控计划与现场实际的偏差,动态的调整计划排产。帮我们规避“画像”的缺陷,直接将群体特征直接强加给个体(工作中心数据直接改变为具体一个设备、人员、模具等数据)。通过数据的关联分析并监控它,我们就能计划未来。
七、生产质量分析与预测
在工业生产中,设备失效、人员疏忽、参数异常、原材料差异、环境波动等因素而导致质量偏离,引起质量等级的缺陷和损失非常巨大。工艺流程复杂的大型制造业,如钢铁、 汽车 、电子、服装等行业,信息数据孤岛凸显,导致质量问题频发,尤其需要“及时发现和预测异常,迅速控制和分析质量异常的原因,进行生产过程改进,稳定生产过程,减少产品质量波动”。
生产质量分析,从工厂订单下单-订单生产-流入市场, 针对整个生产链进行全面的质量分析。其中,打通质量和人、机、料、法、环等数据,各生产数据环环相扣,聚焦质量管理的全量数据分析,帮助企业快速 探索 缺陷根本原因。
1、打通质量和人、机、料、法、环,对影响质量的全量数据进行交互分析, 探索 相互关系,挖掘数据背后的真实原因,获取结果“是什么”,回答“为什么”。
2、将传统的静态汇报模式,改为交互式动态会议,随时随地可以组织生产、质量相关专题会议。通过对维度展示生产和质量KPI,实时预警、掌握产线运营状况。
3、简单易上手的质量分析工具,员工只需对数据进行选取、拖曳,自助灵活地达成期望的数据结果。
4、摒弃以往静态的数据报表,整合多个业务系统数据,多场景数据大屏,自适应多屏,进行综合展示分析,让决策更清晰。
————————————————
物联网时代的八大工业大数据应用场景
物联网时代的八大工业大数据应用场景
工业大数据是一个全新的概念,从字面上理解,工业大数据是指在工业领域信息化应用中所产生的大数据。
随着信息化与工业化的深度融合,信息技术渗透到了工业企业产业链的各个环节,条形码、二维码、RFID、工业传感器、工业自动控制系统、工业物联网、ERP、CAD/CAM/CAE/CAI等技术在工业企业中得到广泛应用,尤其是互联网、移动互联网、物联网等新一代信息技术在工业领域的应用,工业企业也进入了互联网工业的新的发展阶段,工业企业所拥有的数据也日益丰富。工业企业中生产线处于高速运转,由工业设备所产生、采集和处理的数据量远大于企业中计算机和人工产生的数据,从数据类型看也多是非结构化数据,生产线的高速运转则对数据的实时性要求也更高。因此,工业大数据应用所面临的问题和挑战并不比互联网行业的大数据应用少,某些情况下甚至更为复杂。
工业大数据应用将带来工业企业创新和变革的新时代。通过互联网、移动物联网等带来的低成本感知、高速移动连接、分布式计算和高级分析,信息技术和全球工业系统正在深入融合,给全球工业带来深刻的变革,创新企业的研发、生产、运营、营销和管理方式。这些创新不同行业的工业企业带来了更快的速度、更高的效率和更高的洞察力。工业大数据的典型应用包括产品创新、产品故障诊断与预测、工业生产线物联网分析、工业企业供应链优化和产品精准营销等诸多方面。本文将对工业大数据在制造企业的应用场景进行逐一梳理。
1.加速产品创新
客户与工业企业之间的交互和交易行为将产生大量数据,挖掘和分析这些客户动态数据,能够帮助客户参与到产品的需求分析和产品设计等创新活动中,为产品创新作出贡献。福特公司是这方面的表率,他们将大数据技术应用到了福特福克斯电动车的产品创新和优化中,这款车成为了一款名副其实的“大数据电动车”。第一代福特福克斯电动车在驾驶和停车时产生大量数据。在行驶中,司机持续地更新车辆的加速度、刹车、电池充电和位置信息。这对于司机很有用,但数据也传回福特工程师那里,以了解客户的驾驶习惯,包括如何、何时以及何处充电。即使车辆处于静止状态,它也会持续将车辆胎压和电池系统的数据传送给最近的智能电话。
这种以客户为中心的大数据应用场景具有多方面的好处,因为大数据实现了宝贵的新型产品创新和协作方式。司机获得有用的最新信息,而位于底特律的工程师汇总关于驾驶行为的信息,以了解客户,制订产品改进计划,并实施新产品创新。而且,电力公司和其他第三方供应商也可以分析数百万英里的驾驶数据,以决定在何处建立新的充电站,以及如何防止脆弱的电网超负荷运转。
2.产品故障诊断与预测
这可以被用于产品售后服务与产品改进。无所不在的传感器、互联网技术的引入使得产品故障实时诊断变为现实,大数据应用、建模与仿真技术则使得预测动态性成为可能。在马航MH370失联客机搜寻过程中,波音公司获取的发动机运转数据对于确定飞机的失联路径起到了关键作用。我们就拿波音公司飞机系统作为案例,看看大数据应用在产品故障诊断中如何发挥作用。在波音的飞机上,发动机、燃油系统、液压和电力系统等数以百计的变量组成了在航状态,这些数据不到几微秒就被测量和发送一次。以波音737为例,发动机在飞行中每30分钟就能产生10TB数据。
这些数据不仅仅是未来某个时间点能够分析的工程遥测数据,而且还促进了实时自适应控制、燃油使用、零件故障预测和飞行员通报,能有效实现故障诊断和预测。再看一个通用电气(GE)的例子,位于美国亚特兰大的GE能源监测和诊断(MD)中心,收集全球50多个国家上千台GE燃气轮机的数据,每天就能为客户收集10G的数据,通过分析来自系统内的传感器振动和温度信号的恒定大数据流,这些大数据分析将为GE公司对燃气轮机故障诊断和预警提供支撑。风力涡轮机制造商Vestas也通过对天气数据及期涡轮仪表数据进行交叉分析,从而对风力涡轮机布局进行改善,由此增加了风力涡轮机的电力输出水平并延长了服务寿命。
3.工业物联网生产线的大数据应用
现代化工业制造生产线安装有数以千计的小型传感器,来探测温度、压力、热能、振动和噪声。因为每隔几秒就收集一次数据,利用这些数据可以实现很多形式的分析,包括设备诊断、用电量分析、能耗分析、质量事故分析(包括违反生产规定、零部件故障)等。首先,在生产工艺改进方面,在生产过程中使用这些大数据,就能分析整个生产流程,了解每个环节是如何执行的。一旦有某个流程偏离了标准工艺,就会产生一个报警信号,能更快速地发现错误或者瓶颈所在,也就能更容易解决问题。利用大数据技术,还可以对工业产品的生产过程建立虚拟模型,仿真并优化生产流程,当所有流程和绩效数据都能在系统中重建时,这种透明度将有助于制造商改进其生产流程。再如,在能耗分析方面,在设备生产过程中利用传感器集中监控所有的生产流程,能够发现能耗的异常或峰值情形,由此便可在生产过程中优化能源的消耗,对所有流程进行分析将会大大降低能耗。
4.工业供应链的分析和优化
当前,大数据分析已经是很多电子商务企业提升供应链竞争力的重要手段。例如,电子商务企业京东商城,通过大数据提前分析和预测各地商品需求量,从而提高配送和仓储的效能,保证了次日货到的客户体验。RFID等产品电子标识技术、物联网技术以及移动互联网技术能帮助工业企业获得完整的产品供应链的大数据,利用这些数据进行分析,将带来仓储、配送、销售效率的大幅提升和成本的大幅下降。
以海尔公司为例,海尔公司供应链体系很完善,它以市场链为纽带,以订单信息流为中心,带动物流和资金流的运动,整合全球供应链资源和全球用户资源。在海尔供应链的各个环节,客户数据、企业内部数据、供应商数据被汇总到供应链体系中,通过供应链上的大数据采集和分析,海尔公司能够持续进行供应链改进和优化,保证了海尔对客户的敏捷响应。美国较大的OEM供应商超过千家,为制造企业提供超过1万种不同的产品,每家厂商都依靠市场预测和其他不同的变量,如销售数据、市场信息、展会、新闻、竞争对手的数据,甚至天气预报等来销售自己的产品。
利用销售数据、产品的传感器数据和出自供应商数据库的数据,工业制造企业便可准确地预测全球不同区域的需求。由于可以跟踪库存和销售价格,可以在价格下跌时买进,所以制造企业便可节约大量的成本。如果再利用产品中传感器所产生的数据,知道产品出了什么故障,哪里需要配件,他们还可以预测何处以及何时需要零件。这将会极大地减少库存,优化供应链。
5.产品销售预测与需求管理
通过大数据来分析当前需求变化和组合形式。大数据是一个很好的销售分析工具,通过历史数据的多维度组合,可以看出区域性需求占比和变化、产品品类的市场受欢迎程度以及最常见的组合形式、消费者的层次等,以此来调整产品策略和铺货策略。在某些分析中我们可以发现,在开学季高校较多的城市对文具的需求会高很多,这样我们可以加大对这些城市经销商的促销,吸引他们在开学季多订货,同时在开学季之前一两个月开始产能规划,以满足促销需求。对产品开发方面,通过消费人群的关注点进行产品功能、性能的调整,如几年前大家喜欢用音乐手机,而现在大家更倾向于用手机上网、拍照分享等,手机的拍照功能提升就是一个趋势,4G手机也占据更大的市场份额。通过大数据对一些市场细节的分析,可以找到更多的潜在销售机会。
6.生产计划与排程
制造业面对多品种小批量的生产模式,数据的精细化自动及时方便的采集(MES/DCS)及多变性导致数据剧烈增大,再加上十几年的信息化的历史数据,对于需要快速响应的APS来说,是一个巨大的挑战。大数据可以给予我们更详细的数据信息,发现历史预测与实际的偏差概率,考虑产能约束、人员技能约束、物料可用约束、工装模具约束,通过智能的优化算法,制定预计划排产,并监控计划与现场实际的偏差,动态的调整计划排产。帮我们规避“画像”的缺陷,直接将群体特征直接强加给个体(工作中心数据直接改变为具体一个设备、人员、模具等数据)。通过数据的关联分析并监控它,我们就能计划未来。虽然,大数据略有瑕疵,只要得到合理的应用,大数据会变成我们强大的武器。当年,福特问大数据的客户需求是什么?而回答是“一匹更快的马”,而不是现在已经普及的汽车。所以,在大数据的世界里,创意、直觉、冒险精神和知识野心尤为重要。
7.产品质量管理与分析
传统的制造业正面临着大数据的冲击,在产品研发、工艺设计、质量管理、生产运营等各方面都迫切期待着有创新方法的诞生,来应对工业背景下的大数据挑战。例如在半导体行业,芯片在生产过程中会经历许多次掺杂、增层、光刻和热处理等复杂的工艺制程,每一步都必须达到极其苛刻的物理特性要求,高度自动化的设备在加工产品的同时,也同步生成了庞大的检测结果。这些海量数据究竟是企业的包袱,还是企业的金矿呢?如果说是后者的话,那么又该如何快速地拨云见日,从“金矿”中准确地发现产品良率波动的关键原因呢?这是一个已经困扰半导体工程师们多年的技术难题。
某半导体科技公司生产的晶圆在经过测试环节后,每天都会产生包含一百多个测试项目、长度达几百万行测试记录的数据集。按照质量管理的基本要求,一个必不可少的工作就是需要针对这些技术规格要求各异的一百多个测试项目分别进行一次过程能力分析。如果按照传统的工作模式,我们需要按部就班地分别计算一百多个过程能力指数,对各项质量特性一一考核。这里暂且不论工作量的庞大与繁琐,哪怕有人能够解决了计算量的问题,但也很难从这一百多个过程能力指数中看出它们之间的关联性,更难对产品的总体质量性能有一个全面的认识与总结。然而,如果我们利用大数据质量管理分析平台,除了可以快速地得到一个长长的传统单一指标的过程能力分析报表之外,更重要的是,还可以从同样的大数据集中得到很多崭新的分析结果。
8.工业污染与环保检测
《穹顶之下》令人印象深刻的一点是通过可视化报表,柴静团队向观众传递雾霾问题的严峻性、雾霾的成因等等。
这给我们带来的一个启示,即大数据对环保具有巨大价值。《穹顶之下》图表的原生数据哪里来的呢?其实并非都是凭借高层关系获取,不少数据都是公开可查,在中国政府网、各部委网站、中石油中石化官网、环保组织官网以及一些特殊机构,可查询的公益环保数据越来越多,包括全国空气、水文等数据,气象数据,工厂分布及污染排放达标情况等数据等等。只不过这些数据太分散、太专业、缺少分析、没有可视化,普通人看不懂。如果能够看懂并保持关注,大数据将成为社会监督环保的重要手段。近日百度上线《全国污染监测地图》就是一个很好的方式,结合开放的环保大数据,百度地图加入了污染检测图层,任何人都可以通过它查看全国及自己所在区域省市,所有的在环保局监控之下的排放机构(包括各类火电厂、国控工业企业和污水处理厂等)的位置信息、机构名称、排放污染源的种类,最近一次环保局公布的污染排放达标情况等。可查看距离自己最近的污染源,出现提醒,该监测点检测项目,哪些超标,超标多少倍。这些信息可以实时分享到社交媒体平台,告知好友,提醒大家一同注意污染源情况及个人安全健康。
总结工业大数据应用的价值潜力巨大。但是,实现这些价值还有很多工作要做。一个是大数据意识建立的问题。过去,也有这些大数据,但由于没有大数据的意识,数据分析手段也不足,很多实时数据被丢弃或束之高阁,大量数据的潜在价值被埋没。还有一个重要问题是数据孤岛的问题。很多工业企业的数据分布于企业中的各个孤岛中,特别是在大型跨国公司内,要想在整个企业内提取这些数据相当困难。因此,工业大数据应用一个重要议题是集成应用。
以上是小编为大家分享的关于物联网时代的八大工业大数据应用场景的相关内容,更多信息可以关注环球青藤分享更多干货
什么是大数据分析 主要应用于哪些行业?以制造业为例
大数据作为IT行业最流行的词汇,围绕大数据的商业价值的使用,随之而来的数据仓库、数据安全、数据分析、数据挖掘等,逐渐成为业界所追求的利润焦点。随着大数据时代的到来,大数据分析也应运而生。
1.大数据分析主要应用于哪些行业?
制造业: 利用工业大数据提升制造业水平,包括产品故障诊断与预测、分析工艺流程、改进生产工艺,优化生产过程能耗、工业供应链分析与优化、生产计划与排程。
金融业: 大数据在高频交易、社交情绪分析和信贷风险分析三大金融创新领域发挥重大作用。
汽车行业: 利用大数据和物联网技术的无人驾驶汽车,在不远的未来将走入我们的日常生活。
互联网行业: 借助于大数据技术分析用户行为,进行商品推荐和针对性广告投放。
餐饮行业: 利用大数据实现餐饮O2O模式,彻底改变传统餐饮经营方式。
2.大数据分析师就业前景如何?
从20世纪90年代起,欧美国家开始大量培养数据分析师,直到现在,对数据分析师的需求仍然长盛不衰,而且还有扩展之势。
根据美国劳工部预测,到2018年,数据分析师的需求量将增长20%。就算你不是数据分析师,但数据分析技能也是未来必不可少的工作技能之一。在数据分析行业发展成熟的国家,90%的市场决策和经营决策都是通过数据分析研究确定的。
3.关于大数据分析具体含义?
1、数据分析可以让人们对数据产生更加优质的诠释,而具有预知意义的分析可以让分析员根据可视化分析和数据分析后的结果做出一些预测性的推断。
2、大数据的分析与存储和数据的管理是一些数据分析层面的最佳实践。通过按部就班的流程和工具对数据进行分析可以保证一个预先定义好的高质量的分析结果。
3、不管使用者是数据分析领域中的专家,还是普通的用户,可作为数据分析工具的始终只能是数据可视化。可视化可以直观的展示数据,让数据自己表达,让客户得到理想的结果。
什么是大数据分析 主要应用于哪些行业?中琛魔方大数据平台指出大数据的价值,远远不止于此,大数据针对各行各业的渗透,大大推动了社会生产和生活,未来必将产生重大而深远的影响。
我们可以看看亿信华辰关于制造业的案例,
某电建集团主要从事国内外高速公路、市政、铁路、轨道交通、桥梁、隧 道、城市综合体开发、机场、港口、航道、地下综合管廊以及生态水环境治理、海绵 城市建设、环境保护等项目投资、建设、运营等,为客户提供投资融资、咨询规划、 设计建造、管理运营一揽子解决方案和集成式、一体化服务。成立以来,投资建设了 一大批体量大、强度高、领域宽的基础设施及环保项目。
该公司的数据化建设,或将成为新型基础设施建设的一个缩影。
项目背景 数字经济时代,数据资源已经成为企业的核心资源和核心竞争力,各类企业信息化建设的重心正从 IT(信息技术) 向 DT(数据技术) 转化,未来信息化建设的重心将是如何对组织内外部的数据进行深入、多维、实时的挖掘和分析,以满足决策层的需求,推动信息化向更高层面进化,构筑公司数字经济时代的新优势。目前,由于各级各部门大量的时间用在内外部各种繁杂的报表填报、汇总、统计和分析上,同时各级领导有对公司或者所辖单位的整体经营情况仍旧通过传统的汇报、传统的报表等了解,缺乏直观和可视化系统支撑决策分析,主要存在问题如下:1、数据孤岛严重各级各部门数据无法有效共享,跨部门跨层级的数据采集、共享和分析利用困难。2、数据采集方式落后数据采集仍旧采用传统 EXCEL 方式进行,缺乏自下而上的数据采集、数据审核、数据报送、汇总分析的数据采集平台支撑,导致数据源分散、数据标准不统一、数据质量难以保证、数据采集效率低下。3、缺乏统一的决策经营指标体系和数据资源统一管理机制导致数据资源不能有效利用,价值无法充分发挥,无法为各级领导决策提供有效支持。
建设内容 为彻底解决以上问题,根据需求和数据资产类项目建设方式,系统实现按照“指标资源整理-应用场景展现设计--数据获取-指标资源池-页面实现-决策门户 ”的方式设计。即根据梳理的指标体系应用场景需要确定设计展现界面展现内容,根据展现内容确定指标体系,根据指标体系来并收集相关数据。
1、搭建智能填报系统 梳理指标体系,构建决策指标和主题指标,明确指标类型,指标数据来源,各指标输出口径:是否填报、填报维度与对象、填报周期等等。实现公司各级各部门自下而上决策数据填报、数据审核、 数据报送、汇总查询、数据补录等全过程网络化数据采集的需要。
2、构建经营决策指标体系构建公司经营决策指标体系。收集数据分析需求,分析汇总形成公司市场、经营、履约、运营、项目等生产经营关键指标和相关数据分析主题、指标,形成指标 资源池,实现决策数据的体系化、指标化和模型化。
3、决策指标体系建设根据某电建集团提供数据的内容和主要特征,将决策指标体系的指标分为运营指标、经营指标、整体指标、市场指标、履约指标五类一级指标。每类一级指标又分别由若干个二级指标组成。
4、建设决策支持系统通过亿信BI工具,基于报表采集的数据和相关信息系统积累的数据, 初步构建管理驾驶舱,满足面向公司决策层和部门领导的数据分析,可视化图表化辅助领导管理决策,并集成电建通APP应用,实现决策移动化。
5、搭建自助式BI通过豌豆BI工具搭建自助式 BI。为市场营销、建设管理、资产运营、财务管理等部门有自助探索数据分析的业务人员提供自助式可视化分析工具。
价值体现 在合作中,亿信华辰根据当前数据分析应用的诉求,帮助该电建集团建设决策整体指标、市场指标、履约指标、运营指标五个模块,提供了从数据采集、数据汇总到指标口径定义、指标建模、指标数据落地和数据可视化分析于一体的完整的解决方案。决策管理平台以业务分析平台为基础,以更核心的指标、更直观的展现方式实现数据的分析与监控,支撑领导层的管理决策。主要包括管理驾驶舱、项目看板专题、市场专题、经营专题、履约专题、运营专题等场景。使数据资源得到充分利用,最大程度的发挥数据价值。
大数据主要应用于哪些行业,有什么价值?
大数据无处不在,大数据应用于各个行业,包括金融、汽车、餐饮、电信、能源、体能和娱乐等在内的社会各行各业都已经融入了大数据的印迹,下面详细介绍一下大数据在各行各业的具体应用。
制造业, 利用工业大数据提升制造业水平,包括产品故障诊断与预测、分析工艺流程、改进生产工艺,优化生产过程能耗、工业供应链分析与优化、生产计划与排程
金融行业 ,大数据在高频交易、社交情绪分析和信贷风险分析三大金融创新领域发挥重大作用。
汽车行业, 利用大数据和物联网技术的无人驾驶汽车,在不远的未来将走入我们的日常生活。
互联网行业, 借助于大数据技术,可以分析客户行为,进行商品推荐和针对性广告投放。
餐饮行业, 利用大数据实现餐饮O2O模式,彻底改变传统餐饮经营方式
电信行业 ,利用大数据技术实现客户离网分析,及时掌握客户离网倾向,出台客户挽留措施
能源行业, 随着智能电网的发展,电力公司可以掌握海量的用户用电信息,利用大数据技术分析用户用电模式,可以改进电网运行,合理设计电力需求响应系统,确保电网运行安全。
物流行业, 利用大数据优化物流网络,提高物流效率,降低物流成本
城市管理, 可以利用大数据实现智能交通、环保监测、城市规划和智能安防
生物医学, 大数据可以帮助我们实现流行病预测、智慧医疗、健康管理,同时还可以帮助我们解读DNA,了解更多的生命奥秘
体育娱乐 ,大数据可以帮助我们训练球队,决定投拍哪种题财的影视作品,以及预测比赛结果
安全领域, 政府可以利用大数据技术构建起强大的国家安全保障体系,企业可以利用大数据抵御网络攻击,警察可以借助大数据来预防犯罪。
个人生活 ,大数据还可以应用于个人生活,利用与每个人相关联的“个人大数据”,分析个人生活行为习惯,为其提供更加周到的个性化服务。
大数据的价值,远远不止于此,大数据对各行各业的渗透,大大推动了社会生产和生活,未来必将产生重大而深远的影响,对大数据感兴趣的可以到科多大数据进行更深入的了解咨询~
结语:以上就是首席CTO笔记为大家介绍的关于有多少生产用大数据原生的的全部内容了,希望对大家有所帮助,如果你还想了解更多这方面的信息,记得收藏关注本站。