导读:今天首席CTO笔记来给各位分享关于大数据先学哪个好的相关内容,如果能碰巧解决你现在面临的问题,别忘了关注本站,现在开始吧!
学大数据,需要学什么课程吗?兄弟请具体点。
IT时代逐渐开始向大数据DT时代迈进,很多企业和个人纷纷开始向大数据靠拢,希望在岗起步的道路上能占有一个属于自己的数据空间,迎接以后更激烈的竞争环境。企业向大数据靠拢的方法就是招揽一些大数据方面的人才,而个人向大数据靠拢的方式就是去学习大数据。想学习大数据的人越来越多,但是,大数据到底学的课程是什么呢?大数据学习的知识点都有哪些呢?下面给大家好好普及一下,这样学起来才会有的放矢。
首先我们要了解Java语言和Linux操作系统,这两个是学习大数据的基础,学习的顺序不分前后。
Java :只要了解一些基础即可,做大数据不需要很深的Java 技术,学java SE 就相当于有学习大数据。基础
Linux:因为大数据相关软件都是在Linux上运行的,所以Linux要学习的扎实一些,学好Linux对你快速掌握大数据相关技术会有很大的帮助,能让你更好的理解hadoop、hive、hbase、spark等大数据软件的运行环境和网络环境配置,能少踩很多坑,学会shell就能看懂脚本这样能更容易理解和配置大数据集群。还能让你对以后新出的大数据技术学习起来更快。
好说完基础了,再说说还需要学习哪些大数据技术,可以按我写的顺序学下去。
Hadoop:这是现在流行的大数据处理平台几乎已经成为大数据的代名词,所以这个是必学的。Hadoop里面包括几个组件HDFS、MapReduce和YARN,HDFS是存储数据的地方就像我们电脑的硬盘一样文件都存储在这个上面,MapReduce是对数据进行处理计算的,它有个特点就是不管多大的数据只要给它时间它就能把数据跑完,但是时间可能不是很快所以它叫数据的批处理。
记住学到这里可以作为你学大数据的一个节点。
Zookeeper:这是个万金油,安装Hadoop的HA的时候就会用到它,以后的Hbase也会用到它。它一般用来存放一些相互协作的信息,这些信息比较小一般不会超过1M,都是使用它的软件对它有依赖,对于我们个人来讲只需要把它安装正确,让它正常的run起来就可以了。
Mysql:我们学习完大数据的处理了,接下来学习学习小数据的处理工具mysql数据库,因为一会装hive的时候要用到,mysql需要掌握到什么层度那?你能在Linux上把它安装好,运行起来,会配置简单的权限,修改root的密码,创建数据库。这里主要的是学习SQL的语法,因为hive的语法和这个非常相似。
Sqoop:这个是用于把Mysql里的数据导入到Hadoop里的。当然你也可以不用这个,直接把Mysql数据表导出成文件再放到HDFS上也是一样的,当然生产环境中使用要注意Mysql的压力。
Hive:这个东西对于会SQL语法的来说就是神器,它能让你处理大数据变的很简单,不会再费劲的编写MapReduce程序。有的人说Pig那?它和Pig差不多掌握一个就可以了。
Oozie:既然学会Hive了,我相信你一定需要这个东西,它可以帮你管理你的Hive或者MapReduce、Spark脚本,还能检查你的程序是否执行正确,出错了给你发报警并能帮你重试程序,最重要的是还能帮你配置任务的依赖关系。我相信你一定会喜欢上它的,不然你看着那一大堆脚本,和密密麻麻的crond是不是有种想屎的感觉。
Hbase:这是Hadoop生态体系中的NOSQL数据库,他的数据是按照key和value的形式存储的并且key是唯一的,所以它能用来做数据的排重,它与MYSQL相比能存储的数据量大很多。所以他常被用于大数据处理完成之后的存储目的地。
Kafka:这是个比较好用的队列工具,队列是干吗的?排队买票你知道不?数据多了同样也需要排队处理,这样与你协作的其它同学不会叫起来,你干吗给我这么多的数据(比如好几百G的文件)我怎么处理得过来,你别怪他因为他不是搞大数据的,你可以跟他讲我把数据放在队列里你使用的时候一个个拿,这样他就不在抱怨了马上灰流流的去优化他的程序去了,因为处理不过来就是他的事情。而不是你给的问题。当然我们也可以利用这个工具来做线上实时数据的入库或入HDFS,这时你可以与一个叫Flume的工具配合使用,它是专门用来提供对数据进行简单处理,并写到各种数据接受方(比如Kafka)的。
Spark:它是用来弥补基于MapReduce处理数据速度上的缺点,它的特点是把数据装载到内存中计算而不是去读慢的要死进化还特别慢的硬盘。特别适合做迭代运算,所以算法流们特别稀饭它。它是用scala编写的。Java语言或者Scala都可以操作它,因为它们都是用JVM的。
想学大数据应该先学习什么?
首先,0基础入门大数据,先从一门编程语言入手。大数据建议,如果你想往大数据开发方向走,学习Java,想学数据分析或者数据挖掘,那就选Python。
学大数据需要学哪种语言好?
当下俨然已经是大数据时代,你知道什么是大数据吗?大数据(BigData)又称为巨量资料,指需要新处理模式才能具有更强的决策力、洞察力和流程优化能力的海量、高增长率和多样化的信息资产。目前学大数据的人数是越来越多,大家都知道学大数据之前需要学习一门计算机编程语言,那么学什么好呢?跟IT培训一起来关注下吧。
计算机编程语言的种类,是真不少,当下比较受欢迎的就属Java、C/C++、PHP、python、R等等,那么学大数据到底需要学什么语言好呢?其实,现在学大数据的人大部分都是选择学Java,大数据培训机构也是把先教Java然后再教大数据,那么学大数据为什么先学Java语言好呢?
学大数据需要学什么语言好?Java语言好,原因如下:
1.Java功能强大、简单易用
Java是目前使用最为广泛的网络编程语言之一,它不仅吸收了C++语言的各种优点,还摒弃了C++里难以理解的多继承、指针等概念,Java语言作为静态面向对象编程语言的代表,极好地实现了面向对象理论,允许程序员以优雅的思维方式进行复杂的编程,因此Java语言具有功能强大和简单易用两个特征。
2.Java拥有极高的跨平台能力
Java可以编写桌面应用程序、Web应用程序、分布式系统和嵌入式系统应用程序等与传统的编程语言,如C、C++相比,Java能够更加容易上手,而比之微软平台的开发语言,如VB、MFC等,则有着跨平台运行的能力,尽管Java没有能够完全实现最初的一次编程、随处运行的口号,但是Java相比於其它较早的编程语言,仍然拥有极高的跨平台能力。
3.大数据跟Java息息相关
Java除了以上特性还有很多其他计算机编程语言无法比拟的特性,大数据跟Hadoop密切相关,而Hadoop以及其他大数据处理技术很多都是用Java,例如Apache的基于Java的HBase和Accumulo以及ElasticSearchas,因此学习Hadoop的一个首要条件,就是掌握Java语言编程,那么学大数据,当然首选Java语言。
北大青鸟java培训:为什么学大数据要先学Java?
很多朋友在寻找Java和大数据有什么样的关系的时候,一部分朋友很快Get到了重点,就是现在学大数据一般要有Java基础,换而言之,学大数据先从学Java开始,很多朋友就不解,为什么学大数据要先学Java,Java和大数据到底存在什么样的关系。
今天就跟辽宁电脑培训一起来探索下谜底吧。
Java是一种可以撰写跨平台应用软件的面向对象的程序设计语言。
大数据,或称巨量资料,指的是需要新处理模式才能具有更强的决策力、洞察力和流程优化能力的海量、高增长率和多样化的信息资产。
从它们各种的概念来看,它们之间好像没有半点关系,那么究竟为什么学大数据前要先学Java呢?在大数据的学习中,也许别的你可能不在意,但是Hadoop想必你是注意到了的吧,大数据中不得不学的重要内容。
Hadoop的创始人DougCutting曾说过:“Java在开发者的生产率和运行效率之间取得很好的权衡。
开发者可以使用广泛存在的高质量类库,切身受益于这种简洁、功能强大、类型安全的语言。
“换言之:没有Hadoop就不存在大数据,没有Java就没有Hadoop。
那么从DougCutting所说的话中,你找到Java和大数据的关系了吗?大数据的开发有赖于Java语言,并且是相当依赖的程度,所以学大数据前得先学习Java语言。
那么Java和大数据学哪个好呢?两种结合一起学是最棒的。
该怎么学Java大数据呢?
结语:以上就是首席CTO笔记为大家整理的关于大数据先学哪个好的全部内容了,感谢您花时间阅读本站内容,希望对您有所帮助,更多关于大数据先学哪个好的相关内容别忘了在本站进行查找喔。