今天给各位分享大数据部门有多少人的知识,其中也会对大数据部门有多少人员组成进行解释,如果能碰巧解决你现在面临的问题,别忘了关注本站,现在开始吧!
本文目录一览:
1、一个完整的大数据开发部门需要什么人?人员构成是怎么样的2、2019年大数据人才需求量有多少人3、【科普】企业中,大数据部门的常见组成4、大数据数仓项目架构一个完整的大数据开发部门需要什么人?人员构成是怎么样的
大数据开发通常需要编程技能,根据我3年多的编程经验,编程技能将带来更好的开发。大数据开发一般有数据仓库开发、数据分析、数据开发三大类,每一类都需要不同的技能。但他们都有很多共同点。一般技能: 除了基本的 sql 能力,包括使用传统数据库如 mysql 和 oracle,以及分布式数据库如 hive 和 hbase 的能力,其他的,如 mapreduce 和 spark,会更好。可以使用聚类,聚类除了问题具有一定的解聚类问题的能力。数据仓库开发: 能够编号仓库建模、维表、事实表、主题表、星型模型、雪花型模型等,熟悉业务、全局视图,建立数据仓库。数据开发: 数据开发有离线开发和实时开发,这种后端开发比较偏向于 java 按需开发,加上程序的日常维护。数据分析: 这需要很强的 sql 技能,如果你能在数据分析中使用 python 会更好。要掌握像 sqoop 和 kettle 这样的常用 etl 工具,请使用报告系统。当然,如果你想学习,你可以学得更深入。毕竟,在通常的发展过程中,特别是小公司的分工不明确,这些技能或多或少都是我们需要掌握的。一个人可以成为几个人,就像一个全能工程师。
2019年大数据人才需求量有多少人
猎聘2019年大数据人才就业趋势报告显示:中国大数据人才缺口高达150万。
【科普】企业中,大数据部门的常见组成
在IT公司里,大数据部门的成员,一般可分为4种:(以房子为例)
先用一张图,帮助大家理解一下~~
出道题目,我们公司的大数据部门,目前有这些岗位,你能一一推测出他们的所在位置吗?
【数据应用工程师】、【数据可视化工程师】、【数据可视化设计师】、【数据平台工程师】、【算法工程师】、【数据分析师】
建房子地基(埋在地下)的那群人
他们就是 平台组/架构组 的那群人,他们负责搭建一套大数据的平台架构体系。一般你肉眼看不到他们的产出,但是当某一堵墙壁歪了的时候,或者你进屋打水但水龙头却流不出来水的时候,你就会意识到他们工作的重要性。
平台组的常见发展路径 :
平台初期,很多公司会用自己的服务器搭一个 私有集群 ,将数据维护起来,开始构建数据平台的第一步。这个,也是原始的大数据平台。(当然,现在有很多公司也是直接上云服务器)
当平台进入高速发展期,考虑到不断扩充的数据量和服务器的维护成本上升,很多公司会迁移平台到 云服务 上,比如阿里云,华为云。云服务的选择要解决的是选择平台所提供的服务,成本,数据通道的维护。【我们公司目前正处于这一阶段,选择了云服务。当前,经过考量也正在由阿里云迁移到华为云】
还有一个阶段,你发现云服务的费用太高,虽然省了你很多事,或者是考虑到敏感数据的安全问题(当然,私有集群也不是百分百安全),然后又开始往 私有集群 迁移。这时候,鉴于数据规模,你大概需要一个靠谱的团队,设计网络布局、设计运维规范、架设监控、建立机房,值班团队走起7*24小时随时准备出台。
至此,产生了平台组,真的大数据平台来了 。
建屋子(砌墙盖瓦)的那群人 :
应用组 的那群人,他们负责建设各类系统/应用。他们搬砖砌墙,建好房子,还要铺设各类管道线路,把地基里面的数据抽出来,放在房子里,让用户们推开门就可以享用。
应用组,有哪些应用? :
这块不太好讲。不过,为了尽量让大家看懂,用 从大到小的思路 尝试下:
在整个社会层面,大数据已应用于各行各业,比如:金融行业/地产行业/零售行业/医疗行业/农业/物流行业/城市管理等等……有哪一个行业,可以脱离数据而生存?有哪一个行业可以不依赖数据而发展?
那么,在一个企业中,数据必然是无法避免的会应用到,不管是1个员工的皮包公司,还是10万员工的跨国集团。so,我们来讲讲具体有哪些应用呢?
一般而言,数据应用分为3类:分别是面向企业内部, 面向企业外部以及面向用户这三种。
这里,鉴于今天的主题,我们只讲 面向企业内部 的大数据应用。
进入正题了:
企业内部产品中,可以从2个角度来看待具体有哪些应用:
策略类 的方向较多,常见的有:
这些有时候会有部分或全部不划在大数据部门下面,但都需要比较规范的数据基础,以及着重与利用数据分析调整产品策略。
做企业内部的大数据应用产品,常常有些心酸的地方:
屋子里面的人 :
产品组 的那群人,主要是一群产品经理(我们公司,目前就半个,由一个分析师兼职着,所以,我们公司没有产品组哦),负责数据类的应用产品设计。他们和上面建房子的工程师们,是紧密的团队关系。鉴于上面对数据应用产品已做了很多阐述,关于他们工作产出的应用具体有哪些,这里就不再赘述。
讲一讲, 数据产品经理 的从业人员得有几个素质:
屋子外面的人 :
分析组 的那群人,一般会有3类:数据分析师、算法工程师 (类似数据挖掘) 、数据科学家 (我们公司没有) 。他们工作的日常:为你提取一份EXCEL数据、制作一张报表数据、用算法模型分析一个问题、训练出一套算法模型等等工作,但不局限于此。
他们常常需要与各个部门打交道,接待很多业务的数据需求,与业务关系紧密。在一些公司,分析组不一定都设置在大数据部门下,他们可能分散在不同的业务部门,为各自部门服务。但是,他们终究也是需要从大数据平台来获取所需的业务数据,做分析处理,得到相关结论~
据我所知,我们公司的业务部门,(好像)也是有自己的分析人员。
简单概括一下这些职位的特点:
【数据分析师】
业务线,负责通过数据分析手段发现和分析业务问题,为决策作支持。
【算法工程师】/【数据挖掘工程师】
偏技术线,负责通过建立模型、算法、预测等提供一些通用的解决方案,当然也有针对某业务的。
【数据科学家】
数据科学家是使用专业知识构建机器学习模型,再以此做出预测并对关键业务问题进行解答的专家。数据科学家仍然需要对数据进行清洗、分析以及可视化处理,这一点和数据分析师是一致的。不过数据科学家在专业技能方面有者更深的研究,涉猎范围也更广,同时他们也能够对机器学习模型进行训练与优化。
至此,整篇文章,已经讲差不多了。
最后总结下,本质上,围绕房子的这4拨人,做的是同一件事情: 提供数据服务 。
完结~
大数据数仓项目架构
云上数据仓库解决方案:
离线数仓架构
离线数仓特点
基于Serverless的云上数据仓库解决方案
架构特点
实时数仓架构
[图片上传失败...(image-ec3d9a-1629814266849)]
实时数仓架构特点
秒级延迟,实时构建数据仓库,架构简单,传统数仓平滑升级
架构特点
数据仓库的输入数据源和输出系统分别是什么?
输入系统:埋点产生的用户行为数据、JavaEE后台产生的业务数据、个别公司有爬虫数据。
输出系统:报表系统、用户画像系统、推荐系统
1)Apache:运维麻烦,组件间兼容性需要自己调研。(一般大厂使用,技术实力雄厚,有专业的运维人员)
2)CDH:国内使用最多的版本,但 CM不开源,但其实对中、小公司使用来说没有影响(建议使用)10000美金一个节点 CDP
3)HDP:开源,可以进行二次开发,但是没有CDH稳定,国内使用较少
服务器使用物理机还是云主机?
1)机器成本考虑:
(1)物理机:以128G内存,20核物理CPU,40线程,8THDD和2TSSD硬盘,单台报价4W出头,惠普品牌。一般物理机寿命5年左右。
(2)云主机,以阿里云为例,差不多相同配置,每年5W
2)运维成本考虑:
(1)物理机:需要有专业的运维人员(1万*13个月)、电费(商业用户)、安装空调
(2)云主机:很多运维工作都由阿里云已经完成,运维相对较轻松
3)企业选择
(1)金融有钱公司和阿里没有直接冲突的公司选择阿里云(上海)
(2)中小公司、为了融资上市,选择阿里云,拉倒融资后买物理机。
(3)有长期打算,资金比较足,选择物理机。
根据数据规模大家集群
属于 研发部 /技术部/数据部,我们属于 大数据组 ,其他还有后端项目组,前端组、测试组、UI组等。其他的还有产品部、运营部、人事部、财务部、行政部等。
大数据开发工程师=大数据组组长=》项目经理=部门经理=》技术总监
职级就分初级,中级,高级。晋升规则不一定,看公司效益和职位空缺。
京东:T1、T2应届生;T3 14k左右 T4 18K左右 T5 24k-28k左右
阿里:p5、p6、p7、p8
小型公司(3人左右):组长1人,剩余组员无明确分工,并且可能兼顾javaEE和前端。
中小型公司(3~6人左右):组长1人,离线2人左右,实时1人左右(离线一般多于实时),组长兼顾和javaEE、前端。
中型公司(5 10人左右):组长1人,离线3 5人左右(离线处理、数仓),实时2人左右,组长和技术大牛兼顾和javaEE、前端。
中大型公司(10 20人左右):组长1人,离线5 10人(离线处理、数仓),实时5人左右,JavaEE1人左右(负责对接JavaEE业务),前端1人(有或者没有人单独负责前端)。(发展比较良好的中大型公司可能大数据部门已经细化拆分,分成多个大数据组,分别负责不同业务)
上面只是参考配置,因为公司之间差异很大,例如ofo大数据部门只有5个人左右,因此根据所选公司规模确定一个合理范围,在面试前必须将这个人员配置考虑清楚,回答时要非常确定。
IOS多少人 安卓多少人 前端多少人 JavaEE多少人 测试多少人
(IOS、安卓) 1-2个人 前端1-3个人; JavaEE一般是大数据的1-1.5倍,测试:有的有,有的没有。1个左右。 产品经理1个、产品助理1-2个,运营1-3个
公司划分:
0-50 小公司
50-500 中等
500-1000 大公司
1000以上 大厂 领军的存在
转自:
关于大数据部门有多少人和大数据部门有多少人员组成的介绍到此就结束了,不知道你从中找到你需要的信息了吗 ?如果你还想了解更多这方面的信息,记得收藏关注本站。