首页>>互联网>>DevOps->dijkstra算法答题过程(dijkstra算法基本原理)

dijkstra算法答题过程(dijkstra算法基本原理)

时间:2023-12-11 本站 点击:0

用dijkstra算法计算源点到个结点的最短路径....谢谢亲爱的朋友~ 详细答案

Dijkstra算法的具体步骤:

Dijkstra算法又称戚梁为单源最短路径,所谓单源是在一个有向图中,从一个顶点出发,求该顶点至所有可到达顶点的最短路径问题。

设G=(V,E)是一个有向图,V表示顶点,E表示边。它的每一条边(i,j)属于E,都有一个非负权W(I,j),在G中指定一个结点v0,要求把从v0到G的每一个接vj(vj属于V)的最短有向路径找出来(或者指出不存在)。

基本思想是:设置一个顶点的集合s,并不断地扩充这个集合,一个顶点属于集合s当且仅当从源点到缓仔早该点的路径已求出。开始时s中仅有源点,并且调整非s中扰雀点的最短路径长度,找当前最短路径点,将其加入到集合s,直到终点在s中。

基本步骤:

1、把所有结点分成两组:

第一组:包括已经确定最短路径的结点;

第二组:包括尚未确定最短路径的结点。

2、开始时,第一组只包含起点,第二组包含剩余的点;

3、用贪心的策略,按最短路径长度递增的顺序把第二组的结点加到第一组去,直到v0可达的所有结点都包含于第一组中。在这个过程中,不断更新最短路径,总保持从v0到第一组各结点的最短路径长度dist都不大于从v0到第二组任何结点的路径长度。

4、每个结点对应一个距离值,第一组结点对应的距离就是v0到此结点的最短路径长度,第二组结点对应的距离值就是v0由第一组结点到此结点的最短路径长度。

5、直到所有的顶点都扫描完毕(v0可达的所有结点都包含于第一组中),找到v0到其它各点的所有最短路径。

数学建模第四章 图论 part4.2最短路径问题-Dijkstra算法

1.Dijkstra算法介绍

算法特点:

迪科斯彻算法使用了广度优先搜索解决赋权有向图或者无向图的单源最短路径问题,算法最终得到一个最短路径树。该算法常用于路由算法或者作为其他图算法的一个子模块。

算法的思路

Dijkstra算法采用的是一种贪心的策略,声明一个数组dis来保存源点到各个顶点的最短距离和一个保存已经找到了最短路径的顶点的集合:T,初始时,原点 s 的路径权重被赋为 0 (dis[s] = 0)。若对于顶点 s 存在能直接到达的边(s,m),则把dis[m]设为w(s, m),同时把所有其他(s不能直接到达的)顶点的路径长颂灶度设为无穷大。初始时,集合T只有顶点s。 

然后,从dis数组选择最小值,则该值就是源点s到该值对应的顶点的最短路径,并且把该点加入到T中,OK,此时完成一个顶点, 

然后,我们需要看看新加入的顶点是否可以到达其他顶点并且看看通过该顶点到达其他点的路径长度是否比源点直接到达短,如果是,那么就替换这些顶点缺凯在dis中的值。 

然后,又从dis中找出最小值,重复上述动作,直到T中包含了图的所有顶点。

2、Dijkstra算法示例演示

我求下图,从顶点v1到其他各个顶点的最短路径.

首先第一步,我们先声明一个dis数组,该数组初始化的值为:

我们的顶点集T的初始化为:T={v1}

既然是求 v1顶点到其余各个顶点的最短路程,那就先找一个离 1 号顶点最近的顶点。通过数组 dis 可知当前离v1顶点最近是 v3顶点。当选择了 2 号顶点后,dis[2](下标从0开始)的值就已经从“估计值”变为了“确定值”,即 v1顶点到 v3顶点的最短路程就是当前 dis[2]值。将V3加入到T中。 

为什么呢?因为目前离 v1顶点最近的是 v3顶点,并且这个图所有的边都是正数,那么肯定不可能通过第三个顶点中转,使得 v1顶点到 v3顶点的路程进一步缩短了。因为 v1顶点到其它顶点的路程肯定没有 v1到 v3顶点短.

OK,既然确定了一个顶点的最短路径,下面我们就要根据这个新入的顶点V3会有出度,发现以v3 为弧尾的有: v3,v4 ,那么我们看看路径:v1–v3–v4的长度是否比v1–v4短,其实这个已经是很明显的了,因为dis[3]代表的就是v1–v4的长度为无穷大,而v1–v3–v4的长度为:10+50=60,所以更新dis[3]的值,得到如下结果: 

因此 dis[3]要更新为 60。这个过程有个专业术语叫做“松弛”。即 v1顶点到 v4顶点的路程即 dis[3],通过 v3,v4 这条边松弛成功。这便是 Dijkstra 算法的主要思想:通过“边”来松弛v1顶点到其余各个顶点的路程。

然后,我们又从除dis[2]和dis[0]外的其他值中寻找最小值,发现dis[4]的值最小,通过之前是解释的原理,可以知道v1到v5的最短距离就是dis[4]的值,然后,我们把v5加入到集合T中,然后,考虑v5的出度是否会影响我们的数组dis的值,v5有两条出度: v5,v4和 v5,v6,然后我们发现:v1–v5–v4的长度为:50,而dis[3]的值为60,所以我们要更新dis[3]的值.另野扮扮外,v1-v5-v6的长度为:90,而dis[5]为100,所以我们需要更新dis[5]的值。更新后的dis数组如下图: 

然后,我们使用同样原理,分别确定了v6和v2的最短路径,最后dis的数组的值如下: 

因此,从图中,我们可以发现v1-v2的值为:∞,代表没有路径从v1到达v2。所以我们得到的最后的结果为:

Dijkstra算法

Dijkstra(迪杰斯特拉)算法是典型的单源最短路径算法,用于计算一个节点到其他所有节点的最短路径。主要特点是以起始点为中心向外层层扩展,直到扩展到终点为止。注意该算法要求图中不存在负权边。

设G=(V,E)是一个带权有向图,把图中顶点集合V分成两组,第一组为已求出最短路径的顶点集合(用S表示,初始时S中只有一个源点,以后每求得一条最短路径 , 就将加入到集合S中,直到全部顶点都加入到S中,算法就结束了),第二组为其余未确定最短路径的顶点集合(用U表示),按最短路径长度的递增次序依次把第二组的顶点加入S中。在加入的过程中,总保持从源点v到S中各顶点的最短路径长度不大于从源点v到U中任何顶点的最短路径长度含侍仿。此外,每个顶点对应一个距离,S中的顶点的距离就是从v到此顶点的最短路径长度,U中的顶点的距离,是从v到此顶点只包括S中的顶点为中间顶点的当前最短路径长度。

(1)初始时,S只包含起点D;U包含除D外的其他顶点,且U中顶点的距离为“起点D到该顶点的距离”(例如,U中顶点A的距离为[D,A]的长度,然后D和A不相邻,则谈枣A的距离为∞)

(2)从U中选出“距离最短的顶点K”,并将顶点K加入到S中;同时,从U中移除顶点K

(3)更新U中各个顶点到起点D的距离。之所以更新U中顶点的距离,是由于上一步谈纤中确定了K是求出最短路径的顶点,从而可以利用K来更新其他顶点到起点D的距离(例如,[D,A]的距离可能大于[D,K]+[K,A]的距离)

(4)重复步骤(2)和(3),直到遍历完所有顶点

最短路径 - Dijkstra算法

算法每次都查找距离起始点最近的点,那么剩下的点距离起始点的距离一定比当前点大。

1.选定A节点并初始化,如上述步骤3所示

2.执行上述 4、5两步骤,找出U集合中路径最短的节点D 加入S集合,并根据条件 if ( 'D 到 B,C,E 的距离' + 'AD 距离' 誉悉 'A 到 B,C,E 的距离' ) 来更新U集合

3.这时候 A-B, A-C 都为3,没关系。其实这时候他俩都是最短距离,如果从算法逻辑来讲的话,会先取到B点。而这个时候 if 条件变成了 if ( 'B 到 C,E 的蠢慧距离' + 'AB 距离' 'A 到 C,E 的距离' ) ,如图所示这时候A-B距离 其实为 A-D-B

思路就是这样,往后就是大同小异了

算法结束

(图片来源于网络)

Dijkstra算法保证能找到一条从初始点到目标点的最短路径,只要所有的边都有一个非负的代价值。在上图中,粉红色带虚答的结点是初始结点,蓝色的是目标点,而类菱形的有色区域则是Dijkstra算法扫描过的区域。颜色最淡的区域是那些离初始点最远的,因而形成探测过程(exploration)的边境(frontier)。因而Dijkstra算法可以找到一条最短的路径,但是效率上并不高。

数据结构--Dijkstra算法最清楚的讲解


本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。
如若转载,请注明出处:/DevOps/23383.html