首页>>互联网>>大数据->医疗大数据有多少钱(2023年最新分享)

医疗大数据有多少钱(2023年最新分享)

时间:2023-12-09 本站 点击:0

导读:很多朋友问到关于医疗大数据有多少钱的相关问题,本文首席CTO笔记就来为大家做个详细解答,供大家参考,希望对大家有所帮助!一起来看看吧!

2022年全国医保基金一共有多少钱

基本医疗保险基金(含生育保险)总收入、总支出分别为28710.28亿元、24011.09亿元。

2021年,全国基本医疗保险基金(含生育保险)总收入为28710.3亿元,较上年增加4071.67亿元,同比增长16.53%。总支出24011.1亿元,较上年增加3061.83亿元,同比增长14.62%。年末基本医疗保险(含生育保险)累计结存36121.5亿元,较上年增加4748.16亿元,同比增长15.13%。

医疗保险基金是指国家为保障职工的基本医疗,由医疗保险经办机构按国家有关规定,向单位和个人筹集用于职工基本医疗保险的专项基金。基本医疗保险基金包括社会统筹基金和个人账户两部分,由用人单位和职工个人按至定比例共同缴纳。

贵阳市大数据科研工作待遇怎么样?

大数据语言是一门随时代快速发展的计算机编程语言,由于它具有大量的数据规模、快速的数据流转、多样的数据类型和价值密度低等特性,所以深受各大企业的青睐,大数据开发的人才也是供不应求。很多人都因为大数据行业薪资较高而选择转行,那么目前贵阳大数据行业薪资待遇一般都多少钱?

从平时的各项薪资统计中我们可以了解到IT行业普遍薪资比较高,而大数据作为IT行业中的佼佼者薪资水平自然也不会低,据职友集数据显示全国大数据开发工程师的平均薪资为16.6K /月,其中拿10K-15K工资的占比最多,达33.3%。

可能有人看这个薪资水平觉得并不高,但其实这是全国平均水平,而一线城市如北京、上海、深圳这些地方会更高一些,能达到将近两万左右每月。而且这个薪资水平要比平均工资7.8K/月高112.8%,所以还是很不错的。

大数据语言被广泛应用于医疗保健与公共卫生、电商运营、批发零售、教育等领域,而且据职友集数据显示大数据相关岗位全国招聘量每天有每天的招聘量为3万多条。所以大数据开发的人才的就业选择也很多,不用担心自己学完之后不好找工作。

而且目前大数据人才在市场上很抢手,由于大数据行业很注重技术,所以很多企业都更想招聘有项目经验的人并非应届毕业生,所以目前大数据人才供不应求,薪资水平一涨再涨,如果你想转行可以现在尽早开始学习大数据技术并积累相关经验。

医疗大数据爆发,千亿级市场怎么玩

未来资本对大数据的争夺战已经开始。据媒体报道,2013年至2014年以来, 大数据是互联网医疗健康主要并购投资领域之一。

前身为中国首家专业从事医院信息系统软件开发与应用工程企业的北大医疗信息技术有限公司(下称“北大医信”)已经瞄准了医疗大数据的战略方向。

今年3月,北大基金会向北大医信投资3000万,这是北大史上投资最大的“真金白银”。在3月14日的北大医信成立大会上,方正集团高级副总裁、方正信产集团CEO方中华直接给其赋予了重任:“北大和方正集团的大力支持、大数据时代带来的无限机遇,都应该让我们感到,我们的事业之无上光荣;光荣的背后是任重道远,必须要共同努力将北大、方正赋予北大医信的使命完成好、做好大数据事业,不仅要做北大大数据中心,未来还要做国家级、世界级的大数据中心。”

12月11日,弘毅投资、高盛、东软控股及协同创新等投资者共同对东软熙康进行1.7亿美元的增资。东软熙康是东软集团旗下专门从事互联网医疗和健康管理的公司,致力于通过大数据,云计算、物联网、移动互联网提供基于O2O模式的健康管理与医疗服务平台,这笔投资刷新了国内互联网医疗与健康管理领域最大单笔融资的纪录,也是全球互联网医疗与健康管理领域最大单笔融资之一。

上海医联工程已经建立了国内目前医疗机构联网范围最大的临床信息共享系统。该工程的承建商万达信息股份有限公司(下称“万达信息”),2014年7月收购上海复高计算机科技有限公司,8月收购宁波金唐软件股份有限公司。这两个公司都是在医疗信息化领域做了十多年的企业。

万达信息股份有限公司总裁助理冯东雷告诉网易科技,万达信息加上新收购的两个子公司,现在一共有员工3500人左右,其中从事与医疗健康相关的有事业部和子公司,员工共有1500人左右,是万达信息业务中最大的一块。

上海金仕达卫宁软件股份有限公司是一家专业从事医疗卫生领域信息化、数字化、软件研究与开发的高科技企业。徐春华告诉网易科技,金仕达卫宁做数据处理是原有业务的一种延伸,但是在过去一年当中,他发现,涉足医疗大数据领域的不光传统的做医疗IT软硬件服务的企业,甚至还有许多跨界的、之前和医疗没关系的上市公司,例如以地产起家的运盛实业、浓缩果汁生产企业国投中鲁等。

而在日前的“2014年中国移动医疗产业年会”上,中国移动、中国电信、中国联通、IBM、保险公司招商信诺等,还有各种健康管理公司都参与了主题为“健康大数据 全民大健康”的论坛。

企业之外,医院和各路研究机构也在尝试开展医疗大数据的研究。11月29日,中国科学院深圳先进技术研究院健康大数据研究中心成立。北京大学正在筹备成立北大医疗健康大数据中心。最近两个月,冯东雷拜访了北京大学、浙江大学、中山大学、中南大学等几所高校,“这些高校都希望在大数据方面和我们进行合作。”他透露。

2014年10月18日,首都医科大学附属北京安贞医院和辉瑞投资有限公司合作的国内首个心血管医疗大数据中心项目启动。

临床应用:还不成熟

目前对医疗大数据的需求集中在在三个层面:运营管理、辅助治疗和辅助科研。在业界看来,目前在中国,医疗大数据已经取得良好效果的是行政管理。

北京市公共卫生信息中心统计室主任郭默宁告诉网易科技,目前在数据的挖掘和利用方面,北京市公共卫生信息中心做的比较有成效的是对医疗机构进行绩效分析。

以前,对医疗机构进行绩效评价并不容易,因为每个病人病情各异,医疗机构的工作难度和工作效果很难衡量,医疗机构之间进行对比也非常困难。郭默宁告诉网易科技,以往对医疗机构进行绩效评估的通常模式是找专家给医院评分,依据经验和主观判断比较多。

2008年开始,北京市公共卫生信息中心尝试根据通过数据挖掘得来的指标对辖区内医疗机构进行绩效评价。她告诉网易科技:“利用统计学方法,可以把医疗机构收治的病症相似的病人进行分组,这样在同组病人当中,就可以比较各个机构的服务优劣了。这样可以促进医疗机构精细化管理,提高医疗服务的质量。”

郭默宁告诉网易科技,未来在公共卫生领域,医疗数据的挖掘和利用的前景是非常广阔的。比如,在医疗卫生资源规划、配置,疾病预警等方面都会得到充分的应用。

在临床辅助治疗和辅助科研方面,已经有机构在进行探索和尝试,但是目前尚不成熟。

万达信息之前研发的“临床辅助决策系统”在业界比较知名,其目前可以在上海市38家市级医院向医生提供近期重复用药、检验、检查的提醒、治疗安全警示以及临床路径(是指针对某一疾病建立一套标准化治疗模式与治疗程序,是一个有关临床治疗的综合模式,以循证医学证据和指南为指导来促进治疗组织和疾病管理的方法,最终起到规范医疗行为,减少变异,降低成本,提高质量的作用)服务。

但是,冯东雷告诉网易科技,这些功能的提供,实际上需要做知识库的建设,但是现在的知识库都是基于现有的教科书、药品使用说明以及一些临床手册,都比较简单,今后要把医生的真实的看病的经验也输入进来,才能在临床上发挥更大的意义,这才是真正的大数据挖掘。他透露,在即将开展的“心血管疾病和肿瘤疾病大数据处理分析与应用研究”的项目中,就有心血管、肿瘤专家参与进来。

2012年,万达信息、国家卫生工程中心就申请了上海市科委医疗健康大数据的课题。在这个项目中,万达信息尝试了对高血压进行大数据分析,试图找到病症、用药和疗效之间的关联。但是冯东雷告诉网易科技,这样的分析目前遇到一些困难。以往的临床研究(随机对照试验RCT)是用实验组和对照组进行的,对照组是一些排除了并发症等相对理想的对照人群。样本量小,但每个样本的数据颗粒很细。但是用医疗大数据做分析的话,样本量很大,但是每个样本数据颗粒比较粗。因此不能套用传统RCT的研究方法。因此需要新的研究思路。目前用大数据已经发现了一些治疗手段和效果的关联性,但是这种结论在临床使用上有多大的意义还有待检验。

这样的研究还在继续。国家“863”计划2015年度项目申报指南中,在生物和医药技术领域已经部署“生物大数据开发与利用关键技术研究”,涉及的内容包括生物大数据标准化和集成、融合技术,生物大数据表述索引、搜索与存储访问技术,心血管疾病和肿瘤疾病大数据处理分析与应用研究,基于区域医疗与健康大数据处理分析与应用研究,组学大数据中心和知识库构建与服务技术等。

万达信息参与了其中的两项,分别为“基于区域医疗与健康大数据处理分析与应用研究”,以及“心血管疾病和肿瘤疾病大数据处理分析与应用研究”。其中后者开展面向中医的心血管疾病和肿瘤疾病大数据分析与应用的研究。

北大医信也在与北京大学合作,研究临床医疗大数据的分析和利用。北大医信服务过的医院超过500家,其中三甲医院200多家,占全国三甲医院总数的1/4左右,北京大学下属有9家附属医院、13家教学医院,这些医院信息系统中积累的大量数据,为进行大数据分析和利用打下了坚实的基础。

北大医信资深副总裁兼CTO邹悦告诉网易科技,目前北大医信的临床决策支持体系正在北京大学人民医院、北京大学国际医院、江苏省人民医院进行试点。

北大医信已经开发了临床预警和建议类的应用。预警类的应用可以根据患者的一些生命体征,判断患病风险并进行提示。建议类的应用,目前北大医信做了糖尿病这个病种,系统可以根据糖尿病人的症状、检验检查结果和病历,给出相应的治疗方案建议。

在临床科研方面,北大医信也做了一些数据分析,并且得到了一些结果。比如,以往子宫内膜异位和子宫肌瘤的误诊率高达65.1%,因为两种疾病的症状非常相似。通过大数据分析发现,卵巢囊肿、腹痛、贫血这三种症状在这两种病中的权重是不同的,子宫内膜异位与卵巢囊肿的关联最强,子宫肌瘤和贫血的关联最强。

“我们分析出了这个结果,但是在临床上怎么用,还要再进一步探讨。”邹悦介绍。

好医生集团董事长高瞻认为,要让大数据产生价值,需要有一条完整的价值链,目前中国的这个价值链还有缺失。大数据的价值链有数据的收集、储存、分析、应用四个环节,但是目前这个产业投入比较多的是收集和储存,分析和应用还比较弱。即使在投入较多的数据收集环节,由于缺乏相应的机制,数据的质量也不是很高。

业内者说:怎么做

在目前的情况下,如何做好大数据?高瞻认为,应当先抓住一些关键业务需求,同时数据基础比较好,先做起来,然后再逐步扩展。他举了两个例子。

好医生集团曾参与过安徽省肥西县卫生局的一个项目。据高瞻介绍,肥西县卫生局将新农合医疗报销系统的数据和卫生局为居民建立的电子健康档案做了一个关联性分析。结果发现,居民的肥胖、抽烟与高血压、糖尿病的发病关联性很强。高瞻告诉网易科技,这不是什么新的发现,但是应用大数据分析的意义在于,之前大家只是从概念上知道肥胖和抽烟会对高血压和糖尿病产生影响,用大数据分析之后,能够真实地看到具体的一个个人的肥胖和抽烟对病症产生了影响。之后,社区医院应用了这个分析结果,给高血压病人、糖尿病病人看病时不光降血压、降血糖,还要干涉患者的肥胖和吸烟。现在整个肥西、还有安徽的很多县都在推广这样的做法,这一个小小的改变,使得很多地方的居民电子健康档案的使用率从20%左右变成了60%—70%,医生们本没有使用积极性的数据库被激活了。

肥西还做了个试验。原来农村治病,不管大人小孩,一般都是开抗生素、输液,好医生集团多年来做乡村医生的培训,呼吁不要滥用抗生素,但是在实际中效果不大。今年年初,安徽省启动了基层医疗卫生机构处方集系统,这个系统可以根据疾病诊断,提示建议处方,旨在规范诊疗行为和用药行为。同时,从今年2月开始,肥西县卫生局每月把医生处方当中使用两种以上抗生素的处方的比例发给医生。结果到了10月份,原来高达20%-60%的数据降到了个位数。

高瞻总结,大数据应用应当先从“Low hanging fruits”,即挂得低的果子、容易达成的目标开始,先把手头有限的“小数据”用好。

这个观点与北京301医院计算机室原主任任连仲不谋而合。

任连仲告诉网易科技,目前中等规模以上的医院起码都积累了数百GB的数据,每100GB的数据就相当于30万份病历。虽然这个数量级还没达到PB级,但是其中一定蕴含着许多有价值的信息。

他拿自己的观察举例说:“我观察了我身边20个左右患恶性肿瘤的人,我发现其中六七成的人在生活中有过非常苦恼郁闷的一段时期。20个样本,就可以总结出一点规律了,何况这个样本量大到GB级呢?那会得到更多、更有价值、更准确的结论。”

他主张先把目前的数据利用起来,现在301医院那些成摞的申请单就是真实的需求。他说:“目前在医院里,这样的服务还是被动的,是医生找上门来我们才提供服务,如果这种服务再进一步走上主动,广而告之,告诉广大医护人员和管理人员我们这里可以提供你们所需的‘信息服务’,医生在和技术人员在不断交流的过程中,一定能挖掘出大数据更大的价值。”

任连仲今年80岁,但是老爷子嘴里蹦出的词是“快速迭代”,按照他的说法:“好工具是用出来的。这是一个巨大的市场,这个事我们不能等。”

国内有哪些医疗大数据公司做得比较好的?优势在哪?

极其流行,同样也是竞争力极其大的一种商业模式。虽然国内软件开发公司都发展壮大起来了,但是各地软件开发公司的实力及资质仍然参差不齐。下面为大家介绍下近期国内软件开发公司的排名汇总。

1:华盛恒辉科技有限公司

上榜理由:华盛恒辉是一家专注于高端软件定制开发服务和高端建设的服务机构,致力于为企业提供全面、系统的开发制作方案。在开发、建设到运营推广领域拥有丰富经验,我们通过建立对目标客户和用户行为的分析,整合高质量设计和极其新技术,为您打造创意十足、有价值的企业品牌。

在军工领域,合作客户包括:中央军委联合参谋(原总参)、中央军委后勤保障部(原总后)、中央军委装备发展部(原总装)、装备研究所、战略支援、军事科学院、研究所、航天科工集团、中国航天科技集团、中国船舶工业集团、中国船舶重工集团、第一研究所、训练器材所、装备技术研究所等单位。

在民用领域,公司大力拓展民用市场,目前合作的客户包括中国中铁电气化局集团、中国铁道科学研究院、济南机务段、东莞轨道交通公司、京港地铁、中国国电集团、电力科学研究院、水利部、国家发改委、中信银行、华为公司等大型客户。

2:五木恒润科技有限公司

上榜理由:五木恒润拥有员工300多人,技术人员占90%以上,是一家专业的军工信息化建设服务单位,为军工单位提供完整的信息化解决方案。公司设有股东会、董事会、监事会、工会等上层机构,同时设置总经理职位,由总经理管理公司的具体事务。公司下设有研发部、质量部、市场部、财务部、人事部等机构。公司下辖成都研发中心、西安研发中心、沈阳办事处、天津办事处等分支机构。

3、浪潮

浪潮集团有限公司是国家首批认定的规划布局内的重点软件企业,中国著名的企业管理软件、分行业ERP及服务供应商,在咨询服务、IT规划、软件及解决方案等方面具有强大的优势,形成了以浪潮ERP系列产品PS、GS、GSP三大主要产品。是目前中国高端企业管理软件领跑者、中国企业管理软件技术领先者、中国最大的行业ERP与集团管理软件供应商、国内服务满意度最高的管理软件企业。

4、德格Dagle

德格智能SaaS软件管理系统自德国工业4.0,并且结合国内工厂行业现状而打造的一款工厂智能化信息平台管理软件,具备工厂ERP管理、SCRM客户关系管理、BPM业务流程管理、

OMS订单管理等四大企业业务信息系统,不仅满足企业对生产进行简易管理的需求,并突破局域网应用的局限性,同时使数据管理延伸到互联网与移动商务,不论是内部的管理应用还是外部的移动应用,都可以在智能SaaS软件管理系统中进行业务流程的管控。

5、Manage

高亚的产品 (8Manage) 是美国经验中国研发的企业管理软件,整个系统架构基于移动互联网和一体化管理设计而成,其源代码编写采用的是最为广泛应用的

Java / J2EE 开发语言,这样的技术优势使 8Manage

可灵活地按需进行客制化,并且非常适用于移动互联网的业务直通式处理,让用户可以随时随地通过手机apps进行实时沟通与交易。

「医疗数据说」近百家企业仅跑出4家独角兽?医疗大数据“金矿”待启

医疗大数据概念是从何时出现的?

早期,医疗大数据并非一个单独行业,更多的作为产业中的一个“元素”。上世纪90年代末,包括东软、卫宁 健康 、万达信息等老牌信息化厂商在公立医院建立根据地,为我国医疗大数据发展打下了基础。

经过十多年的 探索 ,国内的医疗大数据产业链已经初步形成。政策对于医疗大数据的监管和整合逐步推进,产业中也出现了以医疗大数据存储、挖掘、分析以及应用的创业企业。但总体来看,我国医疗大数据的发展速度并不快。

这一方面归咎于我国大数据的总量大,但质量较低、分散分布、不完整等特点;另一方面,由于医疗行业的高度政策导向性,国家对于医疗大数据的管控步伐走的仍然比较保守。

亿欧大 健康 对国内医疗大数据领域的企业进行了盘点,发现这些企业呈现出三大特征,并且在医疗大数据蓝海里,仍有座“金矿”亟待被挖掘。

根据医疗大数据产业链,亿欧大 健康 将其梳理为三个维度:基础层、技术层和应用层。基础层负责数据的采集、转换,技术层专注数据存储、加工、清洗和分析,应用层则聚焦在数据的价值挖掘的场景应用上。

在亿欧大 健康 的盘点中,有部分企业如腾讯、华大基因等企业在三个维度均有覆盖,也有例如博识医疗云等企业专注于医疗大数据的部分环节。

从上述三大层面来看,企业规模分异较为明显。 基础层多集中在上市公司,且多为医疗器械和医疗信息化企业。 由于近几年新成立的创业公司大多并没有太长时间用来沉淀数据,这一行为甚至与其商业化的方向相悖,因此,医疗 健康 大数据的“供给端”集中出现在与实体医院相连的HIT厂商和医疗器械尤其是智能可穿戴设备中。

细观技术层中的企业,大多是以提供医疗 健康 技术解决方案的形式进行服务。 这一类公司通常首先立足于某一病种,并以AI技术和数据加工分析能力为技术壁垒,服务覆盖医疗机构、药企、保险等几大角色。不同的是,各公司所覆盖的细分和范围有所差异。有意思的是,技术层的公司融资轮次都不高,在33家中,B轮及以下的企业有23家,上市公司仅有3家。

这一现象在应用层虽然有所缓解,但企业的体量分异仍然很明显。在应用层统计的34家企业中,B轮及以下公司占据50%,不过,表格中出现不少上市公司的身影。这一方面体现出上市公司医疗逐渐开始注意到了医疗大数据这块“肥肉”,另一方面,也不可避免的加剧了医疗大数据应用层的竞争程度。

很显然,相比AI应用于医疗辅助诊断或是互联网医疗,医疗大数据远还没有到达爆发的节点,对比其他行业,应用程度也没有零售、金融等行业成熟。但根据IDC Digital的预测,截至2020年医疗数据量将达40万亿GB,是2010年的30倍。

这是一片潜在的金矿,那么在医疗 健康 产业中,大数据有哪些应用场景?亿欧大 健康 总结出了6个方向。

1、大数据+医药研发。 在初步应用中,医疗大数据在缩短研发周期、降低研发成本、处理患者数据、模拟疾病模式等方面均有出色的表现,这给入局者们增强了不少信心。

2、大数据+临床决策。 在医疗机构信息化建设的架构上,医疗大数据可以对临床决策起到很好的辅助作用。目前来看,医疗大数据在辅助临床精准医疗、疾病风险预测方面应用较多,例如在患者出现某症状之前就计算出患病概率和时间节点,以便在临床上进行早期干预。

3、大数据+互联网医疗。 曾有行业人士表示,互联网+医疗的核心内容是大数据。在这一场景中,企业比较多的做法是将大数据和互联网医院、养老、 健康 管理和居民电子 健康 档案相结合,并辅助政府进行区域性 健康 信息管理。

4、大数据+医疗保险。 除了助力医疗保险精准服务、精确管理和科学决策,在医疗保险中,大数据还在例如单病种、DRGs等支付标准设计、完善药品数据和统一标准、完善医保智能监控系统等方面有巨大的发挥空间。

5、大数据+ 健康 管理。 “ 健康 管理”这把火并不是伴随着大数据的兴起而烧起来的,但准确来说,是大数据让“精准 健康 管理”开始在行业中成为一代网红,其中玩家包括妙 健康 、 健康 有益等在内的公司。当下,大数据 健康 管理更多地建立在EHR(电子 健康 档案)和EMR(电子病历)两种整理方式上。

6、大数据+智能诊断。 医学影像和辅助诊断的细分应用是医疗大数据最成熟的落地场景之一,但对于当下AI+医疗企业较为苦恼的事情是,一方面数据量级并不足够大,另一方面数据孤岛情况严重,这是制约其发展的很大一个因素。但无论如何,大数据+智能诊断仍广泛被行业所看好。在商业化落地上,这些企业的步伐也相对较快。

总体来看,医疗大数据的应用场景众多,但应用程度大多处于中度乃至弱;在上述表格中近百家医疗大数据企业,仅有丁香园、微医、零氪、思路迪迈入独角兽行列;除此之外,国内专注于医疗大数据的新资本也屈指可数。

这一系列现状实则展现了医疗大数据是一片蓝海,而蓝海之下蕴含的是巨大的商业价值。 在三医联动、分级诊疗等新政策的加持下,以及国家对于医疗 健康 大数据的逐步规整中,作为全行业底层支撑的医疗大数据,势必将迎来爆发的一天。

近年来,随着我国医疗需求攀升,医疗机构、药企、保险公司正不断寻求产业升级新机会,医疗 健康 大数据发展势如破竹。亿欧大 健康 频道策划了【医疗数据说】系列专访和选题报道,聚焦大数据给医疗产业链各环节带来的颠覆和变革。

如果您有合适的企业推荐,请联系亿欧大 健康 频道负责人郭铭梓(微信:Lelion8742390)。

大数据医疗具体是指什么?

医疗大数据是个很宽泛的概念,他有很多详细的分类,包括:电子病历数据,这是患者就医过程中所产生的数据,包括患者基本信息、疾病主诉、检验数据、影像数据、诊断数据、治疗数据等,这类数据一般产生及存储在医疗机构的电子病历中,这也是医疗数据最主要的产生地。电子化的医疗病历方便了病历的存储和传输,但是并未达到进行数据分析的要求。大约80%的医疗数据是自由文本构成的非结构化数据,其中不仅包括大段的文字描述,也包括包含非统一文字的表格字段。通过医学自然语言理解技术,将非结构化医疗数据转化为适合计算机分析的结构化形式是医疗大数据分析的基础。电子病历中所采集的数据是数据量最多、最有价值的医疗数据。通过和临床信息系统的整合,内容涵盖了医院内的方方面面的临床数据集。在电子病历的互通互联上,出于各自的利益性(限制病人转诊),各大电子病历企业也不愿意使数据互通互联。根据美国政府相关报告显示,其电子病历共享比例也仅为30%左右。

检验数据

医院检验机构产生了大量患者的诊断、检测数据,也有大量存在的第三方医学检验中心也在产生数据。检验数据是医疗临床子系统中的一个细分小类,但是可以通过检验数据直接患者的疾病发展和变化。目前临床检验设备得到迅速发展,通过LIS 系统对检验数据进行收集,可以对疾病的早发现早诊断和正确诊断做出贡献。

影像数据

随着数据库技术和计算机通讯技术的发展,数字化影像传输和电子胶片应运而生。医疗影像数据是通过影像成像设备和影像信息化系统产生的,医院影像科和第三方独立影像中心存储了大量的数字化影像数据。医学影像大数据,是由DR、CT、MR 等医学影像设备产生所产生并存储在PACS 系统内的大规模、高增速、多结构、高价值和真实准确的影像数据集合。与检验信息系统(LIS)大数据和电子病历(EMR)等同属于医疗大数据的核心范畴。医学影像数据量非常庞大,影像数据增速快,标准化程度高。影像数据和临床其他数据比较起来,它的标准化、格式化、统一性是最好的,价值开发也最早。

费用数据

医院门诊费用、住院费用、单病种费用、医保费用、检查和化验收入、卫生材料收入、诊疗费用、管理费用率、资产负债率等和经济相关的数据。除了医疗服务的收入费用之外,还包含医院所提供医疗服务的成本数据,包含药品、器械、卫生人员工资等成本数据。在DRGs 按疾病诊断相关组付费模式中,需要详细的成本数据核算。通过大样本量的测算,建立病种标准成本,加强病种成本核算和精细化成本管理。

基因测序数据

基因检测技术通过基因组信息以及相关数据系统,预测罹患多种疾病的可能性。基因测序会产大量的个人遗传基因数据,一次全面的基因测序,产生的个人数据则达到300GB。一家基因测序企业每月产生的数据量可以达到数百TB 甚至1PB。

智能穿戴数据

各种智能可穿戴设备的出现,使得血压、心率、体重、体脂、血糖、心电图等健康体征数据的监测都变成可能,患者的单一体征健康数据以及运动数据快速上传到云端,而且数据的采集频率和分析速度大大提升。除了生命体征之外,还有其他智能设备收集的健康行为数据,比如每天的卡路里摄入量、喝水量、步行数、运动时间、睡眠时间等等。智能穿戴设备虽然在这两年遇冷,用户很难形成粘性,但是并不意味着智能穿戴设备所产生的数据没有意义。提供健康数据和服务,可能是智能穿戴厂商未来的转型之路。健康大数据的收集必须依靠硬件载体,智能穿戴设备还将会遇到自己的第二春。

体检数据

体检数据是体检机构所产生的健康人群的身高、体重、检验和影像等数据。这部分数据来自医院或者第三体检机构,大部分是健康人群的体征数据。随着亚健康人群、慢病患者的增加,越来越多的体检者除了想从体检报告中了解自己的健康状况,还想从体检结果中获得精准的健康风险评估,以及如何进行健康、慢病管理。

移动问诊数据

通过移动设备端或者PC 端连接到互联网医疗机构,产生的轻问诊数据和行为数据。曾经通过互联网问诊企业春雨医生的数据,分析各地医生互联网问诊的活跃度、细分疾病种的问诊行为。通过这些数据的分析,对行业发展、互联网问诊企业的决策有非常重要的帮助。

结语:以上就是首席CTO笔记为大家介绍的关于医疗大数据有多少钱的全部内容了,希望对大家有所帮助,如果你还想了解更多这方面的信息,记得收藏关注本站。


本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。
如若转载,请注明出处:/BigData/22280.html